aboutsummaryrefslogtreecommitdiffstats
path: root/docs/content/methodology/overview/vpp_forwarding_modes.md
diff options
context:
space:
mode:
Diffstat (limited to 'docs/content/methodology/overview/vpp_forwarding_modes.md')
-rw-r--r--docs/content/methodology/overview/vpp_forwarding_modes.md104
1 files changed, 104 insertions, 0 deletions
diff --git a/docs/content/methodology/overview/vpp_forwarding_modes.md b/docs/content/methodology/overview/vpp_forwarding_modes.md
new file mode 100644
index 0000000000..b3c3bba984
--- /dev/null
+++ b/docs/content/methodology/overview/vpp_forwarding_modes.md
@@ -0,0 +1,104 @@
+---
+title: "VPP Forwarding Modes"
+weight: 4
+---
+
+# VPP Forwarding Modes
+
+VPP is tested in a number of L2, IPv4 and IPv6 packet lookup and forwarding
+modes. Within each mode baseline and scale tests are executed, the latter with
+varying number of FIB entries.
+
+## L2 Ethernet Switching
+
+VPP is tested in three L2 forwarding modes:
+
+- *l2patch*: L2 patch, the fastest point-to-point L2 path that loops
+ packets between two interfaces without any Ethernet frame checks or
+ lookups.
+- *l2xc*: L2 cross-connect, point-to-point L2 path with all Ethernet
+ frame checks, but no MAC learning and no MAC lookup.
+- *l2bd*: L2 bridge-domain, multipoint-to-multipoint L2 path with all
+ Ethernet frame checks, with MAC learning (unless static MACs are used)
+ and MAC lookup.
+
+l2bd tests are executed in baseline and scale configurations:
+
+- *l2bdbase*: Two MAC FIB entries are learned by VPP to enable packet
+ switching between two interfaces in two directions. VPP L2 switching
+ is tested with 254 IPv4 unique flows per direction, varying IPv4
+ source address per flow in order to invoke RSS based packet
+ distribution across VPP workers. The same source and destination MAC
+ address is used for all flows per direction. IPv4 source address is
+ incremented for every packet.
+
+- *l2bdscale*: A high number of MAC FIB entries are learned by VPP to
+ enable packet switching between two interfaces in two directions.
+ Tested MAC FIB sizes include: i) 10k with 5k unique flows per
+ direction, ii) 100k with 2 x 50k flows and iii) 1M with 2 x 500k
+ flows. Unique flows are created by using distinct source and
+ destination MAC addresses that are changed for every packet using
+ incremental ordering, making VPP learn (or refresh) distinct src MAC
+ entries and look up distinct dst MAC entries for every packet. For
+ details, see
+ [Packet Flow Ordering]({{< ref "packet_flow_ordering#Packet Flow Ordering" >}}).
+
+Ethernet wire encapsulations tested include: untagged, dot1q, dot1ad.
+
+## IPv4 Routing
+
+IPv4 routing tests are executed in baseline and scale configurations:
+
+- *ip4base*: Two /32 IPv4 FIB entries are configured in VPP to enable
+ packet routing between two interfaces in two directions. VPP routing
+ is tested with 253 IPv4 unique flows per direction, varying IPv4
+ source address per flow in order to invoke RSS based packet
+ distribution across VPP workers. IPv4 source address is incremented
+ for every packet.
+
+- *ip4scale*: A high number of /32 IPv4 FIB entries are configured in
+ VPP. Tested IPv4 FIB sizes include: i) 20k with 10k unique flows per
+ direction, ii) 200k with 2 * 100k flows and iii) 2M with 2 * 1M
+ flows. Unique flows are created by using distinct IPv4 destination
+ addresses that are changed for every packet, using incremental or
+ random ordering. For details, see
+ [Packet Flow Ordering]({{< ref "packet_flow_ordering#Packet Flow Ordering" >}}).
+
+## IPv6 Routing
+
+Similarly to IPv4, IPv6 routing tests are executed in baseline and scale
+configurations:
+
+- *ip6base*: Two /128 IPv4 FIB entries are configured in VPP to enable
+ packet routing between two interfaces in two directions. VPP routing
+ is tested with 253 IPv6 unique flows per direction, varying IPv6
+ source address per flow in order to invoke RSS based packet
+ distribution across VPP workers. IPv6 source address is incremented
+ for every packet.
+
+- *ip4scale*: A high number of /128 IPv6 FIB entries are configured in
+ VPP. Tested IPv6 FIB sizes include: i) 20k with 10k unique flows per
+ direction, ii) 200k with 2 * 100k flows and iii) 2M with 2 * 1M
+ flows. Unique flows are created by using distinct IPv6 destination
+ addresses that are changed for every packet, using incremental or
+ random ordering. For details, see
+ [Packet Flow Ordering]({{< ref "packet_flow_ordering#Packet Flow Ordering" >}}).
+
+## SRv6 Routing
+
+SRv6 routing tests are executed in a number of baseline configurations,
+in each case SR policy and steering policy are configured for one
+direction and one (or two) SR behaviours (functions) in the other
+directions:
+
+- *srv6enc1sid*: One SID (no SRH present), one SR function - End.
+- *srv6enc2sids*: Two SIDs (SRH present), two SR functions - End and
+ End.DX6.
+- *srv6enc2sids-nodecaps*: Two SIDs (SRH present) without decapsulation,
+ one SR function - End.
+- *srv6proxy-dyn*: Dynamic SRv6 proxy, one SR function - End.AD.
+- *srv6proxy-masq*: Masquerading SRv6 proxy, one SR function - End.AM.
+- *srv6proxy-stat*: Static SRv6 proxy, one SR function - End.AS.
+
+In all listed cases low number of IPv6 flows (253 per direction) is
+routed by VPP.