diff options
Diffstat (limited to 'docs/ietf/draft-ietf-bmwg-mlrsearch-07.xml')
-rw-r--r-- | docs/ietf/draft-ietf-bmwg-mlrsearch-07.xml | 3136 |
1 files changed, 3136 insertions, 0 deletions
diff --git a/docs/ietf/draft-ietf-bmwg-mlrsearch-07.xml b/docs/ietf/draft-ietf-bmwg-mlrsearch-07.xml new file mode 100644 index 0000000000..c3aede3d3b --- /dev/null +++ b/docs/ietf/draft-ietf-bmwg-mlrsearch-07.xml @@ -0,0 +1,3136 @@ +<?xml version="1.0" encoding="us-ascii"?> + <?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?> + <!-- generated by https://github.com/cabo/kramdown-rfc version 1.7.18 (Ruby 3.1.2) --> + + +<!DOCTYPE rfc [ + <!ENTITY nbsp " "> + <!ENTITY zwsp "​"> + <!ENTITY nbhy "‑"> + <!ENTITY wj "⁠"> + +<!ENTITY RFC1242 SYSTEM "https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1242.xml"> +<!ENTITY RFC2285 SYSTEM "https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2285.xml"> +<!ENTITY RFC2544 SYSTEM "https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2544.xml"> +<!ENTITY RFC8219 SYSTEM "https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8219.xml"> +<!ENTITY RFC9004 SYSTEM "https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9004.xml"> +]> + + +<rfc ipr="trust200902" docName="draft-ietf-bmwg-mlrsearch-07" category="info" tocInclude="true" sortRefs="true" symRefs="true"> + <front> + <title abbrev="MLRsearch">Multiple Loss Ratio Search</title> + + <author initials="M." surname="Konstantynowicz" fullname="Maciek Konstantynowicz"> + <organization>Cisco Systems</organization> + <address> + <email>mkonstan@cisco.com</email> + </address> + </author> + <author initials="V." surname="Polak" fullname="Vratko Polak"> + <organization>Cisco Systems</organization> + <address> + <email>vrpolak@cisco.com</email> + </address> + </author> + + <date year="2024" month="July" day="18"/> + + <area>ops</area> + <workgroup>Benchmarking Working Group</workgroup> + <keyword>Internet-Draft</keyword> + + <abstract> + + +<?line 52?> + +<t>This document proposes extensions to <xref target="RFC2544"></xref> throughput search by +defining a new methodology called Multiple Loss Ratio search +(MLRsearch). MLRsearch aims to minimize search duration, +support multiple loss ratio searches, +and enhance result repeatability and comparability.</t> + +<t>The primary reason for extending <xref target="RFC2544"></xref> is to address the challenges +and requirements presented by the evaluation and testing +of software-based networking systems' data planes.</t> + +<t>To give users more freedom, MLRsearch provides additional configuration options +such as allowing multiple short trials per load instead of one large trial, +tolerating a certain percentage of trial results with higher loss, +and supporting the search for multiple goals with varying loss ratios.</t> + + + + </abstract> + + + + </front> + + <middle> + + +<?line 69?> + + +<section anchor="purpose-and-scope"><name>Purpose and Scope</name> + +<t>The purpose of this document is to describe Multiple Loss Ratio search +(MLRsearch), a data plane throughput search methodology optimized for software +networking DUTs.</t> + +<t>Applying vanilla <xref target="RFC2544"></xref> throughput bisection to software DUTs +results in several problems:</t> + +<t><list style="symbols"> + <t>Binary search takes too long as most trials are done far from the +eventually found throughput.</t> + <t>The required final trial duration and pauses between trials +prolong the overall search duration.</t> + <t>Software DUTs show noisy trial results, +leading to a big spread of possible discovered throughput values.</t> + <t>Throughput requires a loss of exactly zero frames, but the industry +frequently allows for small but non-zero losses.</t> + <t>The definition of throughput is not clear when trial results are inconsistent.</t> +</list></t> + +<t>To address the problems mentioned above, +the MLRsearch test methodology specification employs the following enhancements:</t> + +<t><list style="symbols"> + <t>Allow multiple short trials instead of one big trial per load. + <list style="symbols"> + <t>Optionally, tolerate a percentage of trial results with higher loss.</t> + </list></t> + <t>Allow searching for multiple Search Goals, with differing loss ratios. + <list style="symbols"> + <t>Any trial result can affect each Search Goal in principle.</t> + </list></t> + <t>Insert multiple coarse targets for each Search Goal, earlier ones need +to spend less time on trials. + <list style="symbols"> + <t>Earlier targets also aim for lesser precision.</t> + <t>Use Forwarding Rate (FR) at maximum offered load +<xref target="RFC2285"></xref> (section 3.6.2) to initialize the initial targets.</t> + </list></t> + <t>Take care when dealing with inconsistent trial results. + <list style="symbols"> + <t>Reported throughput is smaller than the smallest load with high loss.</t> + <t>Smaller load candidates are measured first.</t> + </list></t> + <t>Apply several load selection heuristics to save even more time +by trying hard to avoid unnecessarily narrow bounds.</t> +</list></t> + +<t>Some of these enhancements are formalized as MLRsearch specification, +the remaining enhancements are treated as implementation details, +thus achieving high comparability without limiting future improvements.</t> + +<t>MLRsearch configuration options are flexible enough to +support both conservative settings and aggressive settings. +The conservative settings lead to results +unconditionally compliant with <xref target="RFC2544"></xref>, +but longer search duration and worse repeatability. +Conversely, aggressive settings lead to shorter search duration +and better repeatability, but the results are not compliant with <xref target="RFC2544"></xref>.</t> + +<t>No part of <xref target="RFC2544"></xref> is intended to be obsoleted by this document.</t> + +</section> +<section anchor="identified-problems"><name>Identified Problems</name> + +<t>This chapter describes the problems affecting usability +of various performance testing methodologies, +mainly a binary search for <xref target="RFC2544"></xref> unconditionally compliant throughput.</t> + +<section anchor="long-search-duration"><name>Long Search Duration</name> + + +<t>The emergence of software DUTs, with frequent software updates and a +number of different frame processing modes and configurations, +has increased both the number of performance tests +required to verify the DUT update and the frequency of running those tests. +This makes the overall test execution time even more important than before.</t> + +<t>The current <xref target="RFC2544"></xref> throughput definition restricts the potential +for time-efficiency improvements. +A more generalized throughput concept could enable further enhancements +while maintaining the precision of simpler methods.</t> + +<t>The bisection method, when unconditionally compliant with <xref target="RFC2544"></xref>, +is excessively slow. +This is because a significant amount of time is spent on trials +with loads that, in retrospect, are far from the final determined throughput.</t> + +<t><xref target="RFC2544"></xref> does not specify any stopping condition for throughput search, +so users already have an access to a limited trade-off +between search duration and achieved precision. +However, each full 60-second trials doubles the precision, +so not many trials can be removed without a substantial loss of precision.</t> + +</section> +<section anchor="dut-in-sut"><name>DUT in SUT</name> + +<t><xref target="RFC2285"></xref> defines: +- DUT as + - The network forwarding device to which stimulus is offered and + response measured <xref target="RFC2285"></xref> (section 3.1.1). +- SUT as + - The collective set of network devices to which stimulus is offered + as a single entity and response measured <xref target="RFC2285"></xref> (section 3.1.2).</t> + +<t><xref target="RFC2544"></xref> specifies a test setup with an external tester stimulating the +networking system, treating it either as a single DUT, or as a system +of devices, an SUT.</t> + +<t>In the case of software networking, the SUT consists of not only the DUT +as a software program processing frames, but also of +server hardware and operating system functions, +with that server hardware resources shared across all programs including +the operating system.</t> + +<t>Given that the SUT is a shared multi-tenant environment +encompassing the DUT and other components, the DUT might inadvertently +experience interference from the operating system +or other software operating on the same server.</t> + +<t>Some of this interference can be mitigated. +For instance, +pinning DUT program threads to specific CPU cores +and isolating those cores can prevent context switching.</t> + +<t>Despite taking all feasible precautions, some adverse effects may still impact +the DUT's network performance. +In this document, these effects are collectively +referred to as SUT noise, even if the effects are not as unpredictable +as what other engineering disciplines call noise.</t> + +<t>DUT can also exhibit fluctuating performance itself, for reasons +not related to the rest of SUT. For example due to pauses in execution +as needed for internal stateful processing. +In many cases this +may be an expected per-design behavior, as it would be observable even +in a hypothetical scenario where all sources of SUT noise are eliminated. +Such behavior affects trial results in a way similar to SUT noise. +As the two phenomenons are hard to distinguish, +in this document the term 'noise' is used to encompass +both the internal performance fluctuations of the DUT +and the genuine noise of the SUT.</t> + +<t>A simple model of SUT performance consists of an idealized noiseless performance, +and additional noise effects. +For a specific SUT, the noiseless performance is assumed to be constant, +with all observed performance variations being attributed to noise. +The impact of the noise can vary in time, sometimes wildly, +even within a single trial. +The noise can sometimes be negligible, but frequently +it lowers the observed SUT performance as observed in trial results.</t> + +<t>In this model, SUT does not have a single performance value, it has a spectrum. +One end of the spectrum is the idealized noiseless performance value, +the other end can be called a noiseful performance. +In practice, trial result +close to the noiseful end of the spectrum happens only rarely. +The worse the performance value is, the more rarely it is seen in a trial. +Therefore, the extreme noiseful end of the SUT spectrum is not observable +among trial results. +Also, the extreme noiseless end of the SUT spectrum +is unlikely to be observable, this time because some small noise effects +are likely to occur multiple times during a trial.</t> + +<t>Unless specified otherwise, this document's focus is +on the potentially observable ends of the SUT performance spectrum, +as opposed to the extreme ones.</t> + +<t>When focusing on the DUT, the benchmarking effort should ideally aim +to eliminate only the SUT noise from SUT measurements. +However, +this is currently not feasible in practice, as there are no realistic enough +models available to distinguish SUT noise from DUT fluctuations, +based on authors' experience and available literature.</t> + +<t>Assuming a well-constructed SUT, the DUT is likely its +primary performance bottleneck. +In this case, we can define the DUT's +ideal noiseless performance as the noiseless end of the SUT performance spectrum, +especially for throughput. +However, other performance metrics, such as latency, +may require additional considerations.</t> + +<t>Note that by this definition, DUT noiseless performance +also minimizes the impact of DUT fluctuations, as much as realistically possible +for a given trial duration.</t> + +<t>MLRsearch methodology aims to solve the DUT in SUT problem +by estimating the noiseless end of the SUT performance spectrum +using a limited number of trial results.</t> + +<t>Any improvements to the throughput search algorithm, aimed at better +dealing with software networking SUT and DUT setup, should employ +strategies recognizing the presence of SUT noise, allowing the discovery of +(proxies for) DUT noiseless performance +at different levels of sensitivity to SUT noise.</t> + +</section> +<section anchor="repeatability-and-comparability"><name>Repeatability and Comparability</name> + +<t><xref target="RFC2544"></xref> does not suggest to repeat throughput search. +And from just one +discovered throughput value, it cannot be determined how repeatable that value is. +Poor repeatability then leads to poor comparability, +as different benchmarking teams may obtain varying throughput values +for the same SUT, exceeding the expected differences from search precision.</t> + +<t><xref target="RFC2544"></xref> throughput requirements (60 seconds trial and +no tolerance of a single frame loss) affect the throughput results +in the following way. +The SUT behavior close to the noiseful end of its performance spectrum +consists of rare occasions of significantly low performance, +but the long trial duration makes those occasions not so rare on the trial level. +Therefore, the binary search results tend to wander away from the noiseless end +of SUT performance spectrum, more frequently and more widely than short +trials would, thus causing poor throughput repeatability.</t> + +<t>The repeatability problem can be addressed by defining a search procedure +that identifies a consistent level of performance, +even if it does not meet the strict definition of throughput in <xref target="RFC2544"></xref>.</t> + +<t>According to the SUT performance spectrum model, better repeatability +will be at the noiseless end of the spectrum. +Therefore, solutions to the DUT in SUT problem +will help also with the repeatability problem.</t> + +<t>Conversely, any alteration to <xref target="RFC2544"></xref> throughput search +that improves repeatability should be considered +as less dependent on the SUT noise.</t> + +<t>An alternative option is to simply run a search multiple times, and report some +statistics (e.g. average and standard deviation). +This can be used +for a subset of tests deemed more important, +but it makes the search duration problem even more pronounced.</t> + +</section> +<section anchor="throughput-with-non-zero-loss"><name>Throughput with Non-Zero Loss</name> + +<t><xref target="RFC1242"></xref> (section 3.17 Throughput) defines throughput as: + The maximum rate at which none of the offered frames + are dropped by the device.</t> + +<t>Then, it says: + Since even the loss of one frame in a + data stream can cause significant delays while + waiting for the higher level protocols to time out, + it is useful to know the actual maximum data + rate that the device can support.</t> + +<t>However, many benchmarking teams accept a small, +non-zero loss ratio as the goal for their load search.</t> + +<t>Motivations are many:</t> + +<t><list style="symbols"> + <t>Modern protocols tolerate frame loss better, +compared to the time when <xref target="RFC1242"></xref> and <xref target="RFC2544"></xref> were specified.</t> + <t>Trials nowadays send way more frames within the same duration, +increasing the chance of a small SUT performance fluctuation +being enough to cause frame loss.</t> + <t>Small bursts of frame loss caused by noise have otherwise smaller impact +on the average frame loss ratio observed in the trial, +as during other parts of the same trial the SUT may work more closely +to its noiseless performance, thus perhaps lowering the Trial Loss Ratio +below the Goal Loss Ratio value.</t> + <t>If an approximation of the SUT noise impact on the Trial Loss Ratio is known, +it can be set as the Goal Loss Ratio.</t> +</list></t> + +<t>Regardless of the validity of all similar motivations, +support for non-zero loss goals makes any search algorithm more user-friendly. +<xref target="RFC2544"></xref> throughput is not user-friendly in this regard.</t> + +<t>Furthermore, allowing users to specify multiple loss ratio values, +and enabling a single search to find all relevant bounds, +significantly enhances the usefulness of the search algorithm.</t> + +<t>Searching for multiple Search Goals also helps to describe the SUT performance +spectrum better than the result of a single Search Goal. +For example, the repeated wide gap between zero and non-zero loss loads +indicates the noise has a large impact on the observed performance, +which is not evident from a single goal load search procedure result.</t> + +<t>It is easy to modify the vanilla bisection to find a lower bound +for the intended load that satisfies a non-zero Goal Loss Ratio. +But it is not that obvious how to search for multiple goals at once, +hence the support for multiple Search Goals remains a problem.</t> + +</section> +<section anchor="inconsistent-trial-results"><name>Inconsistent Trial Results</name> + +<t>While performing throughput search by executing a sequence of +measurement trials, there is a risk of encountering inconsistencies +between trial results.</t> + +<t>The plain bisection never encounters inconsistent trials. +But <xref target="RFC2544"></xref> hints about the possibility of inconsistent trial results, +in two places in its text. +The first place is section 24, where full trial durations are required, +presumably because they can be inconsistent with the results +from short trial durations. +The second place is section 26.3, where two successive zero-loss trials +are recommended, presumably because after one zero-loss trial +there can be a subsequent inconsistent non-zero-loss trial.</t> + +<t>Examples include:</t> + +<t><list style="symbols"> + <t>A trial at the same load (same or different trial duration) results +in a different Trial Loss Ratio.</t> + <t>A trial at a higher load (same or different trial duration) results +in a smaller Trial Loss Ratio.</t> +</list></t> + +<t>Any robust throughput search algorithm needs to decide how to continue +the search in the presence of such inconsistencies. +Definitions of throughput in <xref target="RFC1242"></xref> and <xref target="RFC2544"></xref> are not specific enough +to imply a unique way of handling such inconsistencies.</t> + +<t>Ideally, there will be a definition of a new quantity which both generalizes +throughput for non-zero-loss (and other possible repeatability enhancements), +while being precise enough to force a specific way to resolve trial result +inconsistencies. +But until such a definition is agreed upon, the correct way to handle +inconsistent trial results remains an open problem.</t> + +</section> +</section> +<section anchor="mlrsearch-specification"><name>MLRsearch Specification</name> + +<t>This section describes MLRsearch specification including all technical +definitions needed for evaluating whether a particular test procedure +complies with MLRsearch specification.</t> + + +<section anchor="overview"><name>Overview</name> + +<t>MLRsearch specification describes a set of abstract system components, +acting as functions with specified inputs and outputs.</t> + +<t>A test procedure is said to comply with MLRsearch specification +if it can be conceptually divided into analogous components, +each satisfying requirements for the corresponding MLRsearch component.</t> + +<t>The Measurer component is tasked to perform trials, +the Controller component is tasked to select trial loads and durations, +the Manager component is tasked to pre-configure everything +and to produce the test report. +The test report explicitly states Search Goals (as the Controller Inputs) +and corresponding Goal Results (Controller Outputs).</t> + + +<t>The Manager calls the Controller once, +the Controller keeps calling the Measurer +until all stopping conditions are met.</t> + +<t>The part where Controller calls the Measurer is called the search. +Any activity done by the Manager before it calls the Controller +(or after Controller returns) is not considered to be part of the search.</t> + +<t>MLRsearch specification prescribes regular search results and recommends +their stopping conditions. Irregular search results are also allowed, +they may have different requirements and stopping conditions.</t> + +<t>Search results are based on load classification. +When measured enough, any chosen load either achieves of fails each search goal, +thus becoming a lower or an upper bound for that goal. +When the relevant bounds are at loads that are close enough +(according to goal precision), the regular result is found. +Search stops when all regular results are found +(or if some goals are proven to have only irregular results).</t> + +</section> +<section anchor="measurement-quantities"><name>Measurement Quantities</name> + +<t>MLRsearch specification uses a number of measurement quantities.</t> + +<t>In general, MLRsearch specification does not require particular units to be used, +but it is REQUIRED for the test report to state all the units. +For example, ratio quantities can be dimensionless numbers between zero and one, +but may be expressed as percentages instead.</t> + +<t>For convenience, a group of quantities can be treated as a composite quantity, +One constituent of a composite quantity is called an attribute, +and a group of attribute values is called an instance of that composite quantity.</t> + +<t>Some attributes are not independent from others, +and they can be calculated from other attributes. +Such quantites are called derived quantities.</t> + +</section> +<section anchor="existing-terms"><name>Existing Terms</name> + +<t>RFC 1242 "Benchmarking Terminology for Network Interconnect Devices" +contains basic definitions, and +RFC 2544 "Benchmarking Methodology for Network Interconnect Devices" +contains discussions of a number of terms and additional methodology requirements. +RFC 2285 adds more terms and discussions, describing some known situations +in more precise way.</t> + +<t>All three documents should be consulted +before attempting to make use of this document.</t> + +<t>Definitions of some central terms are copied and discussed in subsections.</t> + + + + + +<section anchor="sut"><name>SUT</name> + +<t>Defined in <xref target="RFC2285"></xref> (section 3.1.2 System Under Test (SUT)) as follows.</t> + +<t>Definition:</t> + +<t>The collective set of network devices to which stimulus is offered +as a single entity and response measured.</t> + +<t>Discussion:</t> + +<t>An SUT consisting of a single network device is also allowed.</t> + +</section> +<section anchor="dut"><name>DUT</name> + +<t>Defined in <xref target="RFC2285"></xref> (section 3.1.1 Device Under Test (DUT)) as follows.</t> + +<t>Definition:</t> + +<t>The network forwarding device to which stimulus is offered and +response measured.</t> + +<t>Discussion:</t> + +<t>DUT, as a sub-component of SUT, is only indirectly mentioned +in MLRsearch specification, but is of key relevance for its motivation.</t> + + +</section> +<section anchor="trial"><name>Trial</name> + +<t>A trial is the part of the test described in <xref target="RFC2544"></xref> (section 23. Trial description).</t> + +<t>Definition:</t> + +<t>A particular test consists of multiple trials. Each trial returns + one piece of information, for example the loss rate at a particular + input frame rate. Each trial consists of a number of phases:</t> + +<t>a) If the DUT is a router, send the routing update to the "input" + port and pause two seconds to be sure that the routing has settled.</t> + +<t>b) Send the "learning frames" to the "output" port and wait 2 + seconds to be sure that the learning has settled. Bridge learning + frames are frames with source addresses that are the same as the + destination addresses used by the test frames. Learning frames for + other protocols are used to prime the address resolution tables in + the DUT. The formats of the learning frame that should be used are + shown in the Test Frame Formats document.</t> + +<t>c) Run the test trial.</t> + +<t>d) Wait for two seconds for any residual frames to be received.</t> + +<t>e) Wait for at least five seconds for the DUT to restabilize.</t> + +<t>Discussion:</t> + +<t>The definition describes some traits, it is not clear whether all of them +are REQUIRED, or some of them are only RECOMMENDED.</t> + + +<t>For the purposes of the MLRsearch specification, +it is ALLOWED for the test procedure to deviate from the <xref target="RFC2544"></xref> description, +but any such deviation MUST be made explicit in the test report.</t> + +<t>Trials are the only stimuli the SUT is expected to experience +during the search.</t> + +<t>In some discussion paragraphs, it is useful to consider the traffic +as sent and received by a tester, as implicitly defined +in <xref target="RFC2544"></xref> (section 6. Test set up).</t> + +<t>An example of deviation from <xref target="RFC2544"></xref> is using shorter wait times.</t> + +</section> +</section> +<section anchor="trial-terms"><name>Trial Terms</name> + +<t>This section defines new and redefine existing terms for quantities +relevant as inputs or outputs of trial, as used by the Measurer component.</t> + +<section anchor="trial-duration"><name>Trial Duration</name> + +<t>Definition:</t> + +<t>Trial duration is the intended duration of the traffic for a trial.</t> + +<t>Discussion:</t> + +<t>In general, this quantity does not include any preparation nor waiting +described in section 23 of <xref target="RFC2544"></xref> (section 23. Trial description).</t> + +<t>While any positive real value may be provided, some Measurer implementations +MAY limit possible values, e.g. by rounding down to neared integer in seconds. +In that case, it is RECOMMENDED to give such inputs to the Controller +so the Controller only proposes the accepted values. +Alternatively, the test report MUST present the rounded values +as Search Goal attributes.</t> + +</section> +<section anchor="trial-load"><name>Trial Load</name> + +<t>Definition:</t> + +<t>The trial load is the intended load for a trial</t> + +<t>Discussion:</t> + +<t>For test report purposes, it is assumed that this is a constant load by default. +This MAY be only an average load, e.g. when the traffic is intended to be busty, +e.g. as suggested in <xref target="RFC2544"></xref> (section 21. Bursty traffic), +but the test report MUST explicitly mention how non-constant the traffic is.</t> + +<t>Trial load is the quantity defined as Constant Load of <xref target="RFC1242"></xref> +(section 3.4 Constant Load), Data Rate of <xref target="RFC2544"></xref> +(section 14. Bidirectional traffic) +and Intended Load of <xref target="RFC2285"></xref> (section 3.5.1 Intended load (Iload)). +All three definitions specify +that this value applies to one (input or output) interface.</t> + + +<t>For test report purposes, multi-interface aggregate load MAY be reported, +this is understood as the same quantity expressed using different units. +From the report it MUST be clear whether a particular trial load value +is per one interface, or an aggregate over all interfaces.</t> + +<t>Similarly to trial duration, some Measurers may limit the possible values +of trial load. Contrary to trial duration, the test report is NOT REQUIRED +to document such behavior.</t> + + +<t>It is ALLOWED to combine trial load and trial duration in a way +that would not be possible to achieve using any integer number of data frames.</t> + + +</section> +<section anchor="trial-input"><name>Trial Input</name> + +<t>Definition:</t> + +<t>Trial Input is a composite quantity, consisting of two attributes: +trial duration and trial load.</t> + +<t>Discussion:</t> + +<t>When talking about multiple trials, it is common to say "Trial Inputs" +to denote all corresponding Trial Input instances.</t> + +<t>A Trial Input instance acts as the input for one call of the Measurer component.</t> + +<t>Contrary to other composite quantities, MLRsearch implementations +are NOT ALLOWED to add optional attributes here. +This improves interoperability between various implementations of +the Controller and the Measurer.</t> + +</section> +<section anchor="traffic-profile"><name>Traffic Profile</name> + +<t>Definition:</t> + +<t>Traffic profile is a composite quantity +containing attributes other than trial load and trial duration, +needed for unique determination of the trial to be performed.</t> + +<t>Discussion:</t> + +<t>All its attributes are assumed to be constant during the search, +and the composite is configured on the Measurer by the Manager +before the search starts. +This is why the traffic profile is not part of the Trial Input.</t> + +<t>As a consequence, implementations of the Manager and the Measurer +must be aware of their common set of capabilities, so that the traffic profile +uniquely defines the traffic during the search. +The important fact is that none of those capabilities +have to be known by the Controller implementations.</t> + +<t>The traffic profile SHOULD contain some specific quantities, +for example <xref target="RFC2544"></xref> (section 9. Frame sizes) governs +data link frame size as defined in <xref target="RFC1242"></xref> (section 3.5 Data link frame size).</t> + +<t>Several more specific quantities may be RECOMMENDED, depending on media type. +For example, <xref target="RFC2544"></xref> (Appendix C) lists frame formats and protocol addresses, +as recommended from <xref target="RFC2544"></xref> (section 8. Frame formats) +and <xref target="RFC2544"></xref> (section 12. Protocol addresses).</t> + +<t>Depending on SUT configuration, e.g. when testing specific protocols, +additional attributes MUST be included in the traffic profile +and in the test report.</t> + +<t>Example: <xref target="RFC8219"></xref> (section 5.3. Traffic Setup) introduces traffic setups +consisting of a mix of IPv4 and IPv6 traffic - the implied traffic profile +therefore must include an attribute for their percentage.</t> + +<t>Other traffic properties that need to be somehow specified +in Traffic Profile include: +<xref target="RFC2544"></xref> (section 14. Bidirectional traffic), +<xref target="RFC2285"></xref> (section 3.3.3 Fully meshed traffic), +and <xref target="RFC2544"></xref> (section 11. Modifiers).</t> + +</section> +<section anchor="trial-forwarding-ratio"><name>Trial Forwarding Ratio</name> + +<t>Definition:</t> + +<t>The trial forwarding ratio is a dimensionless floating point value. +It MUST range between 0.0 and 1.0, both inclusive. +It is calculated by dividing the number of frames +successfully forwarded by the SUT +by the total number of frames expected to be forwarded during the trial</t> + +<t>Discussion:</t> + +<t>For most traffic profiles, "expected to be forwarded" means +"intended to get transmitted from Tester towards SUT".</t> + +<t>Trial forwarding ratio MAY be expressed in other units +(e.g. as a percentage) in the test report.</t> + +<t>Note that, contrary to loads, frame counts used to compute +trial forwarding ratio are aggregates over all SUT output interfaces.</t> + +<t>Questions around what is the correct number of frames +that should have been forwarded +is generally outside of the scope of this document.</t> + + + +</section> +<section anchor="trial-loss-ratio"><name>Trial Loss Ratio</name> + +<t>Definition:</t> + +<t>The Trial Loss Ratio is equal to one minus the trial forwarding ratio.</t> + +<t>Discussion:</t> + +<t>100% minus the trial forwarding ratio, when expressed as a percentage.</t> + +<t>This is almost identical to Frame Loss Rate of <xref target="RFC1242"></xref> +(section 3.6 Frame Loss Rate), +the only minor difference is that Trial Loss Ratio +does not need to be expressed as a percentage.</t> + +</section> +<section anchor="trial-forwarding-rate"><name>Trial Forwarding Rate</name> + +<t>Definition:</t> + +<t>The trial forwarding rate is a derived quantity, calculated by +multiplying the trial load by the trial forwarding ratio.</t> + +<t>Discussion:</t> + +<t>It is important to note that while similar, this quantity is not identical +to the Forwarding Rate as defined in <xref target="RFC2285"></xref> +(section 3.6.1 Forwarding rate (FR)). +The latter is specific to one output interface only, +whereas the trial forwarding ratio is based +on frame counts aggregated over all SUT output interfaces.</t> + + +</section> +<section anchor="trial-effective-duration"><name>Trial Effective Duration</name> + +<t>Definition:</t> + +<t>Trial effective duration is a time quantity related to the trial, +by default equal to the trial duration.</t> + +<t>Discussion:</t> + +<t>This is an optional feature. +If the Measurer does not return any trial effective duration value, +the Controller MUST use the trial duration value instead.</t> + +<t>Trial effective duration may be any time quantity chosen by the Measurer +to be used for time-based decisions in the Controller.</t> + +<t>The test report MUST explain how the Measurer computes the returned +trial effective duration values, if they are not always +equal to the trial duration.</t> + +<t>This feature can be beneficial for users +who wish to manage the overall search duration, +rather than solely the traffic portion of it. +Simply measure the duration of the whole trial (waits including) +and use that as the trial effective duration.</t> + +<t>Also, this is a way for the Measurer to inform the Controller about +its surprising behavior, for example when rounding the trial duration value.</t> + + +</section> +<section anchor="trial-output"><name>Trial Output</name> + +<t>Definition:</t> + +<t>Trial Output is a composite quantity. The REQUIRED attributes are +Trial Loss Ratio, trial effective duration and trial forwarding rate.</t> + +<t>Discussion:</t> + +<t>When talking about multiple trials, it is common to say "Trial Outputs" +to denote all corresponding Trial Output instances.</t> + +<t>Implementations may provide additional (optional) attributes. +The Controller implementations MUST ignore values of any optional attribute +they are not familiar with, +except when passing Trial Output instance to the Manager.</t> + +<t>Example of an optional attribute: +The aggregate number of frames expected to be forwarded during the trial, +especially if it is not just (a rounded-up value) +implied by trial load and trial duration.</t> + +<t>While <xref target="RFC2285"></xref> (Section 3.5.2 Offered load (Oload)) +requires the offered load value to be reported for forwarding rate measurements, +it is NOT REQUIRED in MLRsearch specification.</t> + + +</section> +<section anchor="trial-result"><name>Trial Result</name> + +<t>Definition:</t> + +<t>Trial result is a composite quantity, +consisting of the Trial Input and the Trial Output.</t> + +<t>Discussion:</t> + +<t>When talking about multiple trials, it is common to say "trial results" +to denote all corresponding trial result instances.</t> + +<t>While implementations SHOULD NOT include additional attributes +with independent values, they MAY include derived quantities.</t> + +</section> +</section> +<section anchor="goal-terms"><name>Goal Terms</name> + +<t>This section defines new and redefine existing terms for quantities +indirectly relevant for inputs or outputs of the Controller component.</t> + +<t>Several goal attributes are defined before introducing +the main component quantity: the Search Goal.</t> + +<section anchor="goal-final-trial-duration"><name>Goal Final Trial Duration</name> + +<t>Definition:</t> + +<t>A threshold value for trial durations.</t> + +<t>Discussion:</t> + +<t>This attribute value MUST be positive.</t> + +<t>A trial with Trial Duration at least as long as the Goal Final Trial Duration +is called a full-length trial (with respect to the given Search Goal).</t> + +<t>A trial that is not full-length is called a short trial.</t> + +<t>Informally, while MLRsearch is allowed to perform short trials, +the results from such short trials have only limited impact on search results.</t> + +<t>One trial may be full-length for some Search Goals, but not for others.</t> + +<t>The full relation of this goal to Controller Output is defined later in +this document in subsections of [Goal Result] (#Goal-Result). +For example, the Conditional Throughput for this goal is computed only from +full-length trial results.</t> + +</section> +<section anchor="goal-duration-sum"><name>Goal Duration Sum</name> + +<t>Definition:</t> + +<t>A threshold value for a particular sum of trial effective durations.</t> + +<t>Discussion:</t> + +<t>This attribute value MUST be positive.</t> + +<t>Informally, even when looking only at full-length trials, +MLRsearch may spend up to this time measuring the same load value.</t> + +<t>If the Goal Duration Sum is larger than the Goal Final Trial Duration, +multiple full-length trials may need to be performed at the same load.</t> + +<t>See [TST009 Example] (#TST009-Example) for an example where possibility +of multiple full-length trials at the same load is intended.</t> + +<t>A Goal Duration Sum value lower than the Goal Final Trial Duration +(of the same goal) could save some search time, but is NOT RECOMMENDED. +See [Relevant Upper Bound] (#Relevant-Upper-Bound) for partial explanation.</t> + +</section> +<section anchor="goal-loss-ratio"><name>Goal Loss Ratio</name> + +<t>Definition:</t> + +<t>A threshold value for Trial Loss Ratios.</t> + +<t>Discussion:</t> + +<t>Attribute value MUST be non-negative and smaller than one.</t> + +<t>A trial with Trial Loss Ratio larger than a Goal Loss Ratio value +is called a lossy trial, with respect to given Search Goal.</t> + +<t>Informally, if a load causes too many lossy trials, +the Relevant Lower Bound for this goal will be smaller than that load.</t> + +<t>If a trial is not lossy, it is called a low-loss trial, +or (specifically for zero Goal Loss Ratio value) zero-loss trial.</t> + +</section> +<section anchor="goal-exceed-ratio"><name>Goal Exceed Ratio</name> + +<t>Definition:</t> + +<t>A threshold value for a particular ratio of sums of Trial Effective Durations.</t> + +<t>Discussion:</t> + +<t>Attribute value MUST be non-negative and smaller than one.</t> + +<t>See later sections for details on which sums. +Specifically, the direct usage is only in +[Appendix A: Load Classification] (#Appendix-A:-Load-Classification) +and [Appendix B: Conditional Throughput] (#Appendix-B:-Conditional-Throughput). +The impact of that usage is discussed in subsections leading to +[Goal Result] (#Goal-Result).</t> + +<t>Informally, the impact of lossy trials is controlled by this value. +Effectively, Goal Exceed Ratio is a percentage of full-length trials +that may be lossy without the load being classified +as the [Relevant Upper Bound] (#Relevant-Upper-Bound).</t> + +</section> +<section anchor="goal-width"><name>Goal Width</name> + +<t>Definition:</t> + +<t>A value used as a threshold for deciding +whether two trial load values are close enough.</t> + +<t>Discussion:</t> + +<t>If present, the value MUST be positive.</t> + +<t>Informally, this acts as a stopping condition, +controlling the precision of the search. +The search stops if every goal has reached its precision.</t> + +<t>Implementations without this attribute +MUST give the Controller other ways to control the search stopping conditions.</t> + +<t>Absolute load difference and relative load difference are two popular choices, +but implementations may choose a different way to specify width.</t> + +<t>The test report MUST make it clear what specific quantity is used as Goal Width.</t> + +<t>It is RECOMMENDED to set the Goal Width (as relative difference) value +to a value no smaller than the Goal Loss Ratio. +(The reason is not obvious, see [Throughput] (#Throughput) if interested.)</t> + +</section> +<section anchor="search-goal"><name>Search Goal</name> + +<t>Definition:</t> + +<t>The Search Goal is a composite quantity consisting of several attributes, +some of them are required.</t> + +<t>Required attributes: +- Goal Final Trial Duration +- Goal Duration Sum +- Goal Loss Ratio +- Goal Exceed Ratio</t> + +<t>Optional attribute: +- Goal Width</t> + +<t>Discussion:</t> + +<t>Implementations MAY add their own attributes. +Those additional attributes may be required by the implementation +even if they are not required by MLRsearch specification. +But it is RECOMMENDED for those implementations +to support missing values by computing reasonable defaults.</t> + +<t>The meaning of listed attributes is formally given only by their indirect effect +on the search results.</t> + +<t>Informally, later sections provide additional intuitions and examples +of the Search Goal attribute values.</t> + +<t>An example of additional attributes required by some implementations +is Goal Initial Trial Duration, together with another attribute +that controls possible intermediate Trial Duration values. +The reasonable default in this case is using the Goal Final Trial Duration +and no intermediate values.</t> + +</section> +<section anchor="controller-input"><name>Controller Input</name> + +<t>Definition:</t> + +<t>Controller Input is a composite quantity +required as an input for the Controller. +The only REQUIRED attribute is a list of Search Goal instances.</t> + +<t>Discussion:</t> + +<t>MLRsearch implementations MAY use additional attributes. +Those additional attributes may be required by the implementation +even if they are not required by MLRsearch specification.</t> + +<t>Formally, the Manager does not apply any Controller configuration +apart from one Controller Input instance.</t> + +<t>For example, Traffic Profile is configured on the Measurer by the Manager +(without explicit assistance of the Controller).</t> + +<t>The order of Search Goal instances in a list SHOULD NOT +have a big impact on Controller Output (see section [Controller Output] (#Controller-Output) , +but MLRsearch implementations MAY base their behavior on the order +of Search Goal instances in a list.</t> + +<t>An example of an optional attribute (outside the list of Search Goals) +required by some implementations is Max Load. +While this is a frequently used configuration parameter, +already governed by <xref target="RFC2544"></xref> (section 20. Maximum frame rate) +and <xref target="RFC2285"></xref> (3.5.3 Maximum offered load (MOL)), +some implementations may detect or discover it instead.</t> + + + +<t>In MLRsearch specification, the [Relevant Upper Bound] (#Relevant-Upper-Bound) +is added as a required attribute precisely because it makes the search result +independent of Max Load value.</t> + + +</section> +</section> +<section anchor="search-goal-examples"><name>Search Goal Examples</name> + +<section anchor="rfc2544-goal"><name>RFC2544 Goal</name> + +<t>The following set of values makes the search result unconditionally compliant +with <xref target="RFC2544"></xref> (section 24 Trial duration)</t> + +<t><list style="symbols"> + <t>Goal Final Trial Duration = 60 seconds</t> + <t>Goal Duration Sum = 60 seconds</t> + <t>Goal Loss Ratio = 0%</t> + <t>Goal Exceed Ratio = 0%</t> +</list></t> + +<t>The latter two attributes are enough to make the search goal +conditionally compliant, adding the first attribute +makes it unconditionally compliant.</t> + +<t>The second attribute (Goal Duration Sum) only prevents MLRsearch +from repeating zero-loss full-length trials.</t> + +<t>Non-zero exceed ratio could prolong the search and allow loss inversion +between lower-load lossy short trial and higher-load full-length zero-loss trial. +From <xref target="RFC2544"></xref> alone, it is not clear whether that higher load +could be considered as compliant throughput.</t> + +</section> +<section anchor="tst009-goal"><name>TST009 Goal</name> + +<t>One of the alternatives to RFC2544 is described in +<xref target="TST009"></xref> (section 12.3.3 Binary search with loss verification). +The idea there is to repeat lossy trials, hoping for zero loss on second try, +so the results are closer to the noiseless end of performance sprectum, +and more repeatable and comparable.</t> + +<t>Only the variant with "z = infinity" is achievable with MLRsearch.</t> + + +<t>For example, for "r = 2" variant, the following search goal should be used:</t> + +<t><list style="symbols"> + <t>Goal Final Trial Duration = 60 seconds</t> + <t>Goal Duration Sum = 120 seconds</t> + <t>Goal Loss Ratio = 0%</t> + <t>Goal Exceed Ratio = 50%</t> +</list></t> + +<t>If the first 60s trial has zero loss, it is enough for MLRsearch to stop +measuring at that load, as even a second lossy trial +would still fit within the exceed ratio.</t> + +<t>But if the first trial is lossy, MLRsearch needs to perform also +the second trial to classify that load. +As Goal Duration Sum is twice as long as Goal Final Trial Duration, +third full-length trial is never needed.</t> + +</section> +</section> +<section anchor="result-terms"><name>Result Terms</name> + +<t>Before defining the output of the Controller, +it is useful to define what the Goal Result is.</t> + +<t>The Goal Result is a composite quantity.</t> + +<t>Following subsections define its attribute first, before describing the Goal Result quantity.</t> + +<t>There is a correspondence between Search Goals and Goal Results. +Most of the following subsections refer to a given Search Goal, +when defining attributes of the Goal Result. +Conversely, at the end of the search, each Search Goal +has its corresponding Goal Result.</t> + +<t>Conceptually, the search can be seen as a process of load classification, +where the Controller attempts to classify some loads as an Upper Bound +or a Lower Bound with respect to some Search Goal.</t> + +<t>Before defining real attributes of the goal result, +it is useful to define bounds in general.</t> + +<section anchor="relevant-upper-bound"><name>Relevant Upper Bound</name> + +<t>Definition:</t> + +<t>The Relevant Upper Bound is the smallest trial load value that is classified +at the end of the search as an upper bound +(see [Appendix A: Load Classification] (#Appendix-A:-Load-Classification)) +for the given Search Goal.</t> + +<t>Discussion:</t> + +<t>One search goal can have many different load classified as an upper bound. +At the end of the search, one of those loads will be the smallest, +becoming the relevant upper bound for that goal.</t> + +<t>In more detail, the set of all trial outputs (both short and full-length, +enough of them according to Goal Duration Sum) +performed at that smallest load failed to uphold all the requirements +of the given Search Goal, mainly the Goal Loss Ratio +in combination with the Goal Exceed Ratio.</t> + + +<t>If Max Load does not cause enough lossy trials, +the Relevant Upper Bound does not exist. +Conversely, if Relevant Upper Bound exists, +it is not affected by Max Load value.</t> + + + +</section> +<section anchor="relevant-lower-bound"><name>Relevant Lower Bound</name> + +<t>Definition:</t> + +<t>The Relevant Lower Bound is the largest trial load value +among those smaller than the Relevant Upper Bound, +that got classified at the end of the search as a lower bound (see +[Appendix A: Load Classification] (#Appendix-A:-Load-Classification)) +for the given Search Goal.</t> + +<t>Discussion:</t> + +<t>Only among loads smaller that the relevant upper bound, +the largest load becomes the relevant lower bound. +With loss inversion, stricter upper bound matters.</t> + +<t>In more detail, the set of all trial outputs (both short and full-length, +enough of them according to Goal Duration Sum) +performed at that largest load managed to uphold all the requirements +of the given Search Goal, mainly the Goal Loss Ratio +in combination with the Goal Exceed Ratio.</t> + +<t>Is no load had enough low-loss trials, the relevant lower bound +MAY not exist.</t> + + +<t>Strictly speaking, if the Relevant Upper Bound does not exist, +the Relevant Lower Bound also does not exist. +In that case, Max Load is classified as a lower bound, +but it is not clear whether a higher lower bound +would be found if the search used a higher Max Load value.</t> + +<t>For a regular Goal Result, the distance between the Relevant Lower Bound +and the Relevant Upper Bound MUST NOT be larger than the Goal Width, +if the implementation offers width as a goal attribute.</t> + + +<t>Searching for anther search goal may cause a loss inversion phenomenon, +where a lower load is classified as an upper bound, +but also a higher load is classified as a lower bound for the same search goal. +The definition of the Relevant Lower Bound ignores such high lower bounds.</t> + + +</section> +<section anchor="conditional-throughput"><name>Conditional Throughput</name> + +<t>Definition:</t> + +<t>The Conditional Throughput (see section [Appendix B: Conditional Throughput] (#Appendix-B:-Conditional-Throughput)) +as evaluated at the Relevant Lower Bound of the given Search Goal +at the end of the search.</t> + +<t>Discussion:</t> + +<t>Informally, this is a typical trial forwarding rate, expected to be seen +at the Relevant Lower Bound of the given Search Goal.</t> + +<t>But frequently it is only a conservative estimate thereof, +as MLRsearch implementations tend to stop gathering more data +as soon as they confirm the value cannot get worse than this estimate +within the Goal Duration Sum.</t> + +<t>This value is RECOMMENDED to be used when evaluating repeatability +and comparability if different MLRsearch implementations.</t> + + +</section> +<section anchor="goal-result"><name>Goal Result</name> + +<t>Definition:</t> + +<t>The Goal Result is a composite quantity consisting of several attributes. +Relevant Upper Bound and Relevant Lower Bound are REQUIRED attributes, +Conditional Throughput is a RECOMMENDED attribute.</t> + +<t>Discussion:</t> + +<t>Depending on SUT behavior, it is possible that one or both relevant bounds +do not exist. The goal result instance where the required attribute values exist +is informally called a Regular Goal Result instance, +so we can say some goals reached Irregular Goal Results.</t> + + +<t>A typical Irregular Goal Result is when all trials at the Max Load +have zero loss, as the Relevant Upper Bound does not exist in that case.</t> + +<t>It is RECOMMENDED that the test report will display such results appropriately, +although MLRsearch specification does not prescibe how.</t> + + +<t>Anything else regarging Irregular Goal Results, +including their role in stopping conditions of the search +is outside the scope of this document.</t> + +</section> +<section anchor="search-result"><name>Search Result</name> + +<t>Definition:</t> + +<t>The Search Result is a single composite object +that maps each Search Goal instance to a corresponding Goal Result instance.</t> + +<t>Discussion:</t> + +<t>Alternatively, the Search Result can be implemented as an ordered list +of the Goal Result instances, matching the order of Search Goal instances.</t> + + +<t>The Search Result (as a mapping) +MUST map from all the Search Goal instances present in the Controller Input.</t> + + + +</section> +<section anchor="controller-output"><name>Controller Output</name> + +<t>Definition:</t> + +<t>The Controller Output is a composite quantity returned from the Controller +to the Manager at the end of the search. +The Search Result instance is its only REQUIRED attribute.</t> + +<t>Discussion:</t> + +<t>MLRsearch implementation MAY return additional data in the Controller Output.</t> + + +</section> +</section> +<section anchor="mlrsearch-architecture"><name>MLRsearch Architecture</name> + + +<t>MLRsearch architecture consists of three main system components: +the Manager, the Controller, and the Measurer.</t> + +<t>The architecture also implies the presence of other components, +such as the SUT and the Tester (as a sub-component of the Measurer).</t> + +<t>Protocols of communication between components are generally left unspecified. +For example, when MLRsearch specification mentions "Controller calls Measurer", +it is possible that the Controller notifies the Manager +to call the Measurer indirectly instead. This way the Measurer implementations +can be fully independent from the Controller implementations, +e.g. programmed in different programming languages.</t> + +<section anchor="measurer"><name>Measurer</name> + +<t>Definition:</t> + +<t>The Measurer is an abstract system component +that when called with a [Trial Input] (#Trial-Input) instance, +performs one [Trial] (#Trial), +and returns a [Trial Output] (#Trial-Output) instance.</t> + +<t>Discussion:</t> + +<t>This definition assumes the Measurer is already initialized. +In practice, there may be additional steps before the search, +e.g. when the Manager configures the traffic profile +(either on the Measurer or on its tester sub-component directly) +and performs a warmup (if the tester requires one).</t> + +<t>It is the responsibility of the Measurer implementation to uphold +any requirements and assumptions present in MLRsearch specification, +e.g. trial forwarding ratio not being larger than one.</t> + +<t>Implementers have some freedom. +For example <xref target="RFC2544"></xref> (section 10. Verifying received frames) +gives some suggestions (but not requirements) related to +duplicated or reordered frames. +Implementations are RECOMMENDED to document their behavior +related to such freedoms in as detailed a way as possible.</t> + +<t>It is RECOMMENDED to benchmark the test equipment first, +e.g. connect sender and receiver directly (without any SUT in the path), +find a load value that guarantees the offered load is not too far +from the intended load, and use that value as the Max Load value. +When testing the real SUT, it is RECOMMENDED to turn any big difference +between the intended load and the offered load into increased Trial Loss Ratio.</t> + +<t>Neither of the two recommendations are made into requirements, +because it is not easy to tell when the difference is big enough, +in a way thay would be dis-entangled from other Measurer freedoms.</t> + +</section> +<section anchor="controller"><name>Controller</name> + +<t>Definition:</t> + +<t>The Controller is an abstract system component +that when called with a Controller Input instance +repeatedly computes Trial Input instance for the Measurer, +obtains corresponding Trial Output instances, +and eventually returns a Controller Output instance.</t> + +<t>Discussion:</t> + +<t>Informally, the Controller has big freedom in selection of Trial Inputs, +and the implementations want to achieve the Search Goals +in the shortest expected time.</t> + +<t>The Controller's role in optimizing the overall search time +distinguishes MLRsearch algorithms from simpler search procedures.</t> + +<t>Informally, each implementation can have different stopping conditions. +Goal Width is only one example. +In practice, implementation details do not matter, +as long as Goal Results are regular.</t> + +</section> +<section anchor="manager"><name>Manager</name> + +<t>Definition:</t> + +<t>The Manager is an abstract system component that is reponsible for +configuring other components, calling the Controller component once, +and for creating the test report following the reporting format as +defined in <xref target="RFC2544"></xref> (section 26. Benchmarking tests).</t> + +<t>Discussion:</t> + +<t>The Manager initializes the SUT, the Measurer (and the Tester if independent) +with their intended configurations before calling the Controller.</t> + +<t>The Manager does not need to be able to tweak any Search Goal attributes, +but it MUST report all applied attribute values even if not tweaked.</t> + + +<t>In principle, there should be a "user" (human or CI) +that "starts" or "calls" the Manager and receives the report. +The Manager MAY be able to be called more than once whis way.</t> + + +</section> +</section> +<section anchor="implementation-compliance"><name>Implementation Compliance</name> + +<t>Any networking measurement setup where there can be logically delineated system components +and there are components satisfying requirements for the Measurer, +the Controller and the Manager, is considered to be compliant with MLRsearch design.</t> + +<t>These components can be seen as abstractions present in any testing procedure. +For example, there can be a single component acting both +as the Manager and the Controller, but as long as values of required attributes +of Search Goals and Goal Results are visible in the test report, +the Controller Input instance and output instance are implied.</t> + +<t>For example, any setup for conditionally (or unconditionally) +compliant <xref target="RFC2544"></xref> throughput testing +can be understood as a MLRsearch architecture, +assuming there is enough data to reconstruct the Relevant Upper Bound.</t> + +<t>See [RFC2544 Goal] (#RFC2544-Goal) subsection for equivalent Search Goal.</t> + +<t>Any test procedure that can be understood as (one call to the Manager of) +MLRsearch architecture is said to be compliant with MLRsearch specification.</t> + +</section> +</section> +<section anchor="additional-considerations"><name>Additional Considerations</name> + +<t>This section focuses on additional considerations, intuitions and motivations +pertaining to MLRsearch methodology.</t> + + +<section anchor="mlrsearch-versions"><name>MLRsearch Versions</name> + +<t>The MLRsearch algorithm has been developed in a code-first approach, +a Python library has been created, debugged, used in production +and published in PyPI before the first descriptions +(even informal) were published.</t> + +<t>But the code (and hence the description) was evolving over time. +Multiple versions of the library were used over past several years, +and later code was usually not compatible with earlier descriptions.</t> + +<t>The code in (some version of) MLRsearch library fully determines +the search process (for a given set of configuration parameters), +leaving no space for deviations.</t> + + + +<t>This historic meaning of MLRsearch, as a family +of search algorithm implementations, +leaves plenty of space for future improvements, at the cost +of poor comparability of results of search algoritm implementations.</t> + + +<t>There are two competing needs. +There is the need for standardization in areas critical to comparability. +There is also the need to allow flexibility for implementations +to innovate and improve in other areas. +This document defines MLRsearch as a new specification +in a manner that aims to fairly balance both needs.</t> + +</section> +<section anchor="stopping-conditions"><name>Stopping Conditions</name> + +<t><xref target="RFC2544"></xref> prescribes that after performing one trial at a specific offered load, +the next offered load should be larger or smaller, based on frame loss.</t> + +<t>The usual implementation uses binary search. +Here a lossy trial becomes +a new upper bound, a lossless trial becomes a new lower bound. +The span of values between the tightest lower bound +and the tightest upper bound (including both values) forms an interval of possible results, +and after each trial the width of that interval halves.</t> + +<t>Usually the binary search implementation tracks only the two tightest bounds, +simply calling them bounds. +But the old values still remain valid bounds, +just not as tight as the new ones.</t> + +<t>After some number of trials, the tightest lower bound becomes the throughput. +<xref target="RFC2544"></xref> does not specify when, if ever, should the search stop.</t> + +<t>MLRsearch introduces a concept of [Goal Width] (#Goal-Width).</t> + +<t>The search stops +when the distance between the tightest upper bound and the tightest lower bound +is smaller than a user-configured value, called Goal Width from now on. +In other words, the interval width at the end of the search +has to be no larger than the Goal Width.</t> + +<t>This Goal Width value therefore determines the precision of the result. +Due to the fact that MLRsearch specification requires a particular +structure of the result (see [Trial Result] (#Trial-Result) section), +the result itself does contain enough information to determine its +precision, thus it is not required to report the Goal Width value.</t> + +<t>This allows MLRsearch implementations to use stopping conditions +different from Goal Width.</t> + +</section> +<section anchor="load-classification"><name>Load Classification</name> + +<t>MLRsearch keeps the basic logic of binary search (tracking tightest bounds, +measuring at the middle), perhaps with minor technical differences.</t> + +<t>MLRsearch algorithm chooses an intended load (as opposed to the offered load), +the interval between bounds does not need to be split +exactly into two equal halves, +and the final reported structure specifies both bounds.</t> + +<t>The biggest difference is that to classify a load +as an upper or lower bound, MLRsearch may need more than one trial +(depending on configuration options) to be performed at the same intended load.</t> + +<t>In consequence, even if a load already does have few trial results, +it still may be classified as undecided, neither a lower bound nor an upper bound.</t> + +<t>An explanation of the classification logic is given in the next section [Logic of Load Classification] (#Logic-of-Load-Classification), +as it heavily relies on other subsections of this section.</t> + +<t>For repeatability and comparability reasons, it is important that +given a set of trial results, all implementations of MLRsearch +classify the load equivalently.</t> + +</section> +<section anchor="loss-ratios"><name>Loss Ratios</name> + +<t>Another difference between MLRsearch and <xref target="RFC2544"></xref> binary search is in the goals of the search. +<xref target="RFC2544"></xref> has a single goal, +based on classifying full-length trials as either lossless or lossy.</t> + +<t>MLRsearch, as the name suggests, can search for multiple goals, +differing in their loss ratios. +The precise definition of the Goal Loss Ratio will be given later. +The <xref target="RFC2544"></xref> throughput goal then simply becomes a zero Goal Loss Ratio. +Different goals also may have different Goal Widths.</t> + +<t>A set of trial results for one specific intended load value +can classify the load as an upper bound for some goals, but a lower bound +for some other goals, and undecided for the rest of the goals.</t> + +<t>Therefore, the load classification depends not only on trial results, +but also on the goal. +The overall search procedure becomes more complicated, when +compared to binary search with a single goal, +but most of the complications do not affect the final result, +except for one phenomenon, loss inversion.</t> + +</section> +<section anchor="loss-inversion"><name>Loss Inversion</name> + +<t>In <xref target="RFC2544"></xref> throughput search using bisection, any load with a lossy trial +becomes a hard upper bound, meaning every subsequent trial has a smaller +intended load.</t> + +<t>But in MLRsearch, a load that is classified as an upper bound for one goal +may still be a lower bound for another goal, and due to the other goal +MLRsearch will probably perform trials at even higher loads. +What to do when all such higher load trials happen to have zero loss? +Does it mean the earlier upper bound was not real? +Does it mean the later lossless trials are not considered a lower bound? +Surely we do not want to have an upper bound at a load smaller than a lower bound.</t> + +<t>MLRsearch is conservative in these situations. +The upper bound is considered real, and the lossless trials at higher loads +are considered to be a coincidence, at least when computing the final result.</t> + +<t>This is formalized using new notions, the [Relevant Upper Bound] (#Relevant-Upper-Bound) and +the [Relevant Lower Bound] (#Relevant-Lower-Bound). +Load classification is still based just on the set of trial results +at a given intended load (trials at other loads are ignored), +making it possible to have a lower load classified as an upper bound, +and a higher load classified as a lower bound (for the same goal). +The Relevant Upper Bound (for a goal) is the smallest load classified +as an upper bound. +But the Relevant Lower Bound is not simply +the largest among lower bounds. +It is the largest load among loads +that are lower bounds while also being smaller than the Relevant Upper Bound.</t> + +<t>With these definitions, the Relevant Lower Bound is always smaller +than the Relevant Upper Bound (if both exist), and the two relevant bounds +are used analogously as the two tightest bounds in the binary search. +When they are less than the Goal Width apart, +the relevant bounds are used in the output.</t> + +<t>One consequence is that every trial result can have an impact on the search result. +That means if your SUT (or your traffic generator) needs a warmup, +be sure to warm it up before starting the search.</t> + +</section> +<section anchor="exceed-ratio"><name>Exceed Ratio</name> + +<t>The idea of performing multiple trials at the same load comes from +a model where some trial results (those with high loss) are affected +by infrequent effects, causing poor repeatability of <xref target="RFC2544"></xref> throughput results. +See the discussion about noiseful and noiseless ends +of the SUT performance spectrum in section [DUT in SUT] (#DUT-in-SUT). +Stable results are closer to the noiseless end of the SUT performance spectrum, +so MLRsearch may need to allow some frequency of high-loss trials +to ignore the rare but big effects near the noiseful end.</t> + +<t>MLRsearch can do such trial result filtering, but it needs +a configuration option to tell it how frequent can the infrequent big loss be. +This option is called the exceed ratio. +It tells MLRsearch what ratio of trials +(more exactly what ratio of trial seconds) can have a [Trial Loss Ratio] (#Trial-Loss-Ratio) +larger than the Goal Loss Ratio and still be classified as a lower bound. +Zero exceed ratio means all trials have to have a Trial Loss Ratio +equal to or smaller than the Goal Loss Ratio.</t> + +<t>For explainability reasons, the RECOMMENDED value for exceed ratio is 0.5, +as it simplifies some later concepts by relating them to the concept of median.</t> + +</section> +<section anchor="duration-sum"><name>Duration Sum</name> + +<t>When more than one trial is intended to classify a load, +MLRsearch also needs something that controls the number of trials needed. +Therefore, each goal also has an attribute called duration sum.</t> + +<t>The meaning of a [Goal Duration Sum] (#Goal-Duration-Sum) is that +when a load has (full-length) trials +whose trial durations when summed up give a value at least as big +as the Goal Duration Sum value, +the load is guaranteed to be classified either as an upper bound +or a lower bound for that goal.</t> + +<t>Due to the fact that the duration sum has a big impact +on the overall search duration, and <xref target="RFC2544"></xref> prescribes +wait intervals around trial traffic, +the MLRsearch algorithm is allowed to sum durations that are different +from the actual trial traffic durations.</t> + +<t>In the MLRsearch specification, the different duration values are called +[Trial Effective Duration] (#Trial-Effective-Duration).</t> + +</section> +<section anchor="short-trials"><name>Short Trials</name> + +<t>MLRsearch requires each goal to specify its final trial duration. +Full-length trial is a shorter name for a trial whose intended trial duration +is equal to (or longer than) the goal final trial duration.</t> + +<t>Section 24 of <xref target="RFC2544"></xref> already anticipates possible time savings +when short trials (shorter than full-length trials) are used. +Full-length trials are the opposite of short trials, +so they may also be called long trials.</t> + +<t>Any MLRsearch implementation may include its own configuration options +which control when and how MLRsearch chooses to use short trial durations.</t> + +<t>For explainability reasons, when exceed ratio of 0.5 is used, +it is recommended for the Goal Duration Sum to be an odd multiple +of the full trial durations, so Conditional Throughput becomes identical to +a median of a particular set of trial forwarding rates.</t> + +<t>The presence of short trial results complicates the load classification logic.</t> + +<t>Full details are given later in section [Logic of Load Classification] (#Logic-of-Load-Classification). +In a nutshell, results from short trials +may cause a load to be classified as an upper bound. +This may cause loss inversion, and thus lower the Relevant Lower Bound, +below what would classification say when considering full-length trials only.</t> + + + +</section> +<section anchor="throughput"><name>Throughput</name> + + +<t>Due to the fact that testing equipment takes the intended load as an input parameter +for a trial measurement, any load search algorithm needs to deal +with intended load values internally.</t> + +<t>But in the presence of goals with a non-zero loss ratio, the intended load +usually does not match the user's intuition of what a throughput is. +The forwarding rate (as defined in <xref target="RFC2285"></xref> section 3.6.1) is better, +but it is not obvious how to generalize it +for loads with multiple trial results and a non-zero +[Goal Loss Ratio] (#Goal-Loss-Ratio).</t> + +<t>The best example is also the main motivation: hard limit performance. +Even if the medium allows higher performance, +the SUT interfaces may have their additional own limitations, +e.g. a specific fps limit on the NIC (a very common occurance).</t> + +<t>Ideally, those should be known and used when computing Max Load. +But if Max Load is higher that what interface can receive or transmit, +there will be a "hard limit" observed in trial results. +Imagine the hard limit is at 100 Mfps, Max Load is higher, +and the goal loss ratio is 0.5%. If DUT has no additional losses, +0.5% loss ratio will be achieved at 100.5025 Mfps (the relevant lower bound). +But it is not intuitive to report SUT performance as a value that is +larger than known hard limit. +We need a generalization of RFC2544 throughput, +different from just the relevant lower bound.</t> + +<t>MLRsearch defines one such generalization, called the Conditional Throughput. +It is the trial forwarding rate from one of the trials +performed at the load in question. +Determining which trial exactly is defined in +[MLRsearch Specification] (#MLRsearch-Specification), +and in [Appendix B: Conditional Throughput] (#Appendix-B:-Conditional-Throughput).</t> + +<t>In the hard limit example, 100.5 Mfps load will still have +only 100.0 Mfps forwarding rate, nicely confirming the known limitation.</t> + +<t>Conditional Throughput is partially related to load classification. +If a load is classified as a lower bound for a goal, +the Conditional Throughput can be calculated from trial results, +and guaranteed to show an loss ratio +no larger than the Goal Loss Ratio.</t> + + + + +<t>Note that when comparing the best (all zero loss) and worst case (all loss +just below Goal Loss Ratio), the same Relevant Lower Bound value +may result in the Conditional Throughput differing up to the Goal Loss Ratio.</t> + +<t>Therefore it is rarely needed to set the Goal Width (if expressed +as the relative difference of loads) below the Goal Loss Ratio. +In other words, setting the Goal Width below the Goal Loss Ratio +may cause the Conditional Throughput for a larger loss ratio to become smaller +than a Conditional Throughput for a goal with a smaller Goal Loss Ratio, +which is counter-intuitive, considering they come from the same search. +Therefore it is RECOMMENDED to set the Goal Width to a value no smaller +than the Goal Loss Ratio.</t> + +<t>Overall, this Conditional Throughput does behave well for comparability purposes.</t> + +</section> +<section anchor="search-time"><name>Search Time</name> + +<t>MLRsearch was primarily developed to reduce the time +required to determine a throughput, either the <xref target="RFC2544"></xref> compliant one, +or some generalization thereof. +The art of achieving short search times +is mainly in the smart selection of intended loads (and intended durations) +for the next trial to perform.</t> + +<t>While there is an indirect impact of the load selection on the reported values, +in practice such impact tends to be small, +even for SUTs with quite a broad performance spectrum.</t> + +<t>A typical example of two approaches to load selection leading to different +Relevant Lower Bounds is when the interval is split in a very uneven way. +Any implementation choosing loads very close to the current Relevant Lower Bound +is quite likely to eventually stumble upon a trial result +with poor performance (due to SUT noise). +For an implementation choosing loads very close +to the current Relevant Upper Bound, this is unlikely, +as it examines more loads that can see a performance +close to the noiseless end of the SUT performance spectrum.</t> + +<t>However, as even splits optimize search duration at give precision, +MLRsearch implementations that prioritize minimizing search time +are unlikely to suffer from any such bias.</t> + +<t>Therefore, this document remains quite vague on load selection +and other optimization details, and configuration attributes related to them. +Assuming users prefer libraries that achieve short overall search time, +the definition of the Relevant Lower Bound +should be strict enough to ensure result repeatability +and comparability between different implementations, +while not restricting future implementations much.</t> + + +</section> +<section anchor="rfc2544-compliance"><name><xref target="RFC2544"></xref> Compliance</name> + +<t>Some Search Goal instances lead to results compliant with RFC2544. +See [RFC2544 Goal] (#RFC2544-Goal) for more details +regarding both conditional and unconditional compliance.</t> + +<t>The presence of other Search Goals does not affect the compliance +of this Goal Result. +The Relevant Lower Bound and the Conditional Throughput are in this case +equal to each other, and the value is the <xref target="RFC2544"></xref> throughput.</t> + +</section> +</section> +<section anchor="logic-of-load-classification"><name>Logic of Load Classification</name> + +<section anchor="introductory-remarks"><name>Introductory Remarks</name> + +<t>This chapter continues with explanations, +but this time more precise definitions are needed +for readers to follow the explanations.</t> + +<t>Descriptions in this section are wordy and implementers should read +[MLRsearch Specification] (#MLRsearch-Specification) section +and Appendices for more concise definitions.</t> + +<t>The two areas of focus here are load classification +and the Conditional Throughput.</t> + +<t>To start with [Performance Spectrum] (#Performance-Spectrum) +subsection contains definitions needed to gain insight +into what Conditional Throughput means. +Remaining subsections discuss load classification.</t> + +<t>For load classification, it is useful to define <strong>good trials</strong> and <strong>bad trials</strong>:</t> + +<t><list style="symbols"> + <t><strong>Bad trial</strong>: Trial is called bad (according to a goal) +if its [Trial Loss Ratio] (#Trial-Loss-Ratio) +is larger than the [Goal Loss Ratio] (#Goal-Loss-Ratio).</t> + <t><strong>Good trial</strong>: Trial that is not bad is called good.</t> +</list></t> + +</section> +<section anchor="performance-spectrum"><name>Performance Spectrum</name> +<t>### Description</t> + +<t>There are several equivalent ways to explain the Conditional Throughput +computation. One of the ways relies on performance +spectrum.</t> + +<t>Take an intended load value, a trial duration value, and a finite set +of trial results, with all trials measured at that load value and duration value.</t> + +<t>The performance spectrum is the function that maps +any non-negative real number into a sum of trial durations among all trials +in the set, that has that number, as their trial forwarding rate, +e.g. map to zero if no trial has that particular forwarding rate.</t> + +<t>A related function, defined if there is at least one trial in the set, +is the performance spectrum divided by the sum of the durations +of all trials in the set.</t> + +<t>That function is called the performance probability function, as it satisfies +all the requirements for probability mass function +of a discrete probability distribution, +the one-dimensional random variable being the trial forwarding rate.</t> + +<t>These functions are related to the SUT performance spectrum, +as sampled by the trials in the set.</t> + + +<t>Take a set of all full-length trials performed at the Relevant Lower Bound, +sorted by decreasing trial forwarding rate. +The sum of the durations of those trials +may be less than the Goal Duration Sum, or not. +If it is less, add an imaginary trial result with zero trial forwarding rate, +such that the new sum of durations is equal to the Goal Duration Sum. +This is the set of trials to use.</t> + +<t>If the quantile touches two trials,</t> + + +<t>the larger trial forwarding rate (from the trial result sorted earlier) is used.</t> + + +<t>The resulting quantity is the Conditional Throughput of the goal in question.</t> + + +<t>A set of examples follows.</t> + +<section anchor="first-example"><name>First Example</name> + +<t><list style="symbols"> + <t>[Goal Exceed Ratio] (#Goal-Exceed-Ratio) = 0 and [Goal Duration Sum] (#Goal-Duration-Sum) has been reached.</t> + <t>Conditional Throughput is the smallest trial forwarding rate among the trials.</t> +</list></t> + +</section> +<section anchor="second-example"><name>Second Example</name> + +<t><list style="symbols"> + <t>Goal Exceed Ratio = 0 and Goal Duration Sum has not been reached yet.</t> + <t>Due to the missing duration sum, the worst case may still happen, so the Conditional Throughput is zero.</t> + <t>This is not reported to the user, as this load cannot become the Relevant Lower Bound yet.</t> +</list></t> + +</section> +<section anchor="third-example"><name>Third Example</name> + +<t><list style="symbols"> + <t>Goal Exceed Ratio = 50% and Goal Duration Sum is two seconds.</t> + <t>One trial is present with the duration of one second and zero loss.</t> + <t>The imaginary trial is added with the duration of one second and zero trial forwarding rate.</t> + <t>The median would touch both trials, so the Conditional Throughput is the trial forwarding rate of the one non-imaginary trial.</t> + <t>As that had zero loss, the value is equal to the offered load.</t> +</list></t> + + +</section> +<section anchor="summary"><name>Summary</name> + +<t>While the Conditional Throughput is a generalization of the trial forwarding rate, +its definition is not an obvious one.</t> + +<t>Other than the trial forwarding rate, the other source of intuition +is the quantile in general, and the median the recommended case.</t> + + +</section> +</section> +<section anchor="trials-with-single-duration"><name>Trials with Single Duration</name> + + +<t>When goal attributes are chosen in such a way that every trial has the same +intended duration, the load classification is simpler.</t> + +<t>The following description follows the motivation +of Goal Loss Ratio, Goal Exceed Ratio, and Goal Duration Sum.</t> + +<t>If the sum of the durations of all trials (at the given load) +is less than the Goal Duration Sum, imagine two scenarios:</t> + +<t><list style="symbols"> + <t><strong>best case scenario</strong>: all subsequent trials having zero loss, and</t> + <t><strong>worst case scenario</strong>: all subsequent trials having 100% loss.</t> +</list></t> + +<t>Here we assume there are as many subsequent trials as needed +to make the sum of all trials equal to the Goal Duration Sum.</t> + +<t>The exceed ratio is defined using sums of durations +(and number of trials does not matter), so it does not matter whether +the "subsequent trials" can consist of an integer number of full-length trials.</t> + +<t>In any of the two scenarios, best case and worst case, we can compute the load exceed ratio, +as the duration sum of good trials divided by the duration sum of all trials, +in both cases including the assumed trials.</t> + +<t>Even if, in the best case scenario, the load exceed ratio is larger +than the Goal Exceed Ratio, the load is an upper bound.</t> + +<t>MKP2 Even if, in the worst case scenario, the load exceed ratio is not larger +than the Goal Exceed Ratio, the load is a lower bound.</t> + + +<t>More specifically:</t> + +<t><list style="symbols"> + <t>Take all trials measured at a given load.</t> + <t>The sum of the durations of all bad full-length trials is called the bad sum.</t> + <t>The sum of the durations of all good full-length trials is called the good sum.</t> + <t>The result of adding the bad sum plus the good sum is called the measured sum.</t> + <t>The larger of the measured sum and the Goal Duration Sum is called the whole sum.</t> + <t>The whole sum minus the measured sum is called the missing sum.</t> + <t>The optimistic exceed ratio is the bad sum divided by the whole sum.</t> + <t>The pessimistic exceed ratio is the bad sum plus the missing sum, that divided by the whole sum.</t> + <t>If the optimistic exceed ratio is larger than the Goal Exceed Ratio, the load is classified as an upper bound.</t> + <t>If the pessimistic exceed ratio is not larger than the Goal Exceed Ratio, the load is classified as a lower bound.</t> + <t>Else, the load is classified as undecided.</t> +</list></t> + +<t>The definition of pessimistic exceed ratio is compatible with the logic in +the Conditional Throughput computation, so in this single trial duration case, +a load is a lower bound if and only if the Conditional Throughput +loss ratio is not larger than the Goal Loss Ratio.</t> + + +<t>If it is larger, the load is either an upper bound or undecided.</t> + +</section> +<section anchor="trials-with-short-duration"><name>Trials with Short Duration</name> + +<section anchor="scenarios"><name>Scenarios</name> + +<t>Trials with intended duration smaller than the goal final trial duration +are called short trials. +The motivation for load classification logic in the presence of short trials +is based around a counter-factual case: What would the trial result be +if a short trial has been measured as a full-length trial instead?</t> + +<t>There are three main scenarios where human intuition guides +the intended behavior of load classification.</t> + +<section anchor="false-good-scenario"><name>False Good Scenario</name> + +<t>The user had their reason for not configuring a shorter goal +final trial duration. +Perhaps SUT has buffers that may get full at longer +trial durations. +Perhaps SUT shows periodic decreases in performance +the user does not want to be treated as noise.</t> + +<t>In any case, many good short trials may become bad full-length trials +in the counter-factual case.</t> + +<t>In extreme cases, there are plenty of good short trials and no bad short trials.</t> + +<t>In this scenario, we want the load classification NOT to classify the load +as a lower bound, despite the abundance of good short trials.</t> + + +<t>Effectively, we want the good short trials to be ignored, so they +do not contribute to comparisons with the Goal Duration Sum.</t> + +</section> +<section anchor="true-bad-scenario"><name>True Bad Scenario</name> + +<t>When there is a frame loss in a short trial, +the counter-factual full-length trial is expected to lose at least as many +frames.</t> + +<t>In practice, bad short trials are rarely turning into +good full-length trials.</t> + +<t>In extreme cases, there are no good short trials.</t> + +<t>In this scenario, we want the load classification +to classify the load as an upper bound just based on the abundance +of short bad trials.</t> + +<t>Effectively, we want the bad short trials +to contribute to comparisons with the Goal Duration Sum, +so the load can be classified sooner.</t> + +</section> +<section anchor="balanced-scenario"><name>Balanced Scenario</name> + +<t>Some SUTs are quite indifferent to trial duration. +Performance probability function constructed from short trial results +is likely to be similar to the performance probability function constructed +from full-length trial results (perhaps with larger dispersion, +but without a big impact on the median quantiles overall).</t> + + +<t>For a moderate Goal Exceed Ratio value, this may mean there are both +good short trials and bad short trials.</t> + +<t>This scenario is there just to invalidate a simple heuristic +of always ignoring good short trials and never ignoring bad short trials, +as that simple heuristic would be too biased.</t> + +<t>Yes, the short bad trials +are likely to turn into full-length bad trials in the counter-factual case, +but there is no information on what would the good short trials turn into.</t> + +<t>The only way to decide safely is to do more trials at full length, +the same as in False Good Scenario.</t> + +</section> +</section> +<section anchor="classification-logic"><name>Classification Logic</name> + +<t>MLRsearch picks a particular logic for load classification +in the presence of short trials, but it is still RECOMMENDED +to use configurations that imply no short trials, +so the possible inefficiencies in that logic +do not affect the result, and the result has better explainability.</t> + +<t>With that said, the logic differs from the single trial duration case +only in different definition of the bad sum. +The good sum is still the sum across all good full-length trials.</t> + +<t>Few more notions are needed for defining the new bad sum:</t> + +<t><list style="symbols"> + <t>The sum of durations of all bad full-length trials is called the bad long sum.</t> + <t>The sum of durations of all bad short trials is called the bad short sum.</t> + <t>The sum of durations of all good short trials is called the good short sum.</t> + <t>One minus the Goal Exceed Ratio is called the subceed ratio.</t> + <t>The Goal Exceed Ratio divided by the subceed ratio is called the exceed coefficient.</t> + <t>The good short sum multiplied by the exceed coefficient is called the balancing sum.</t> + <t>The bad short sum minus the balancing sum is called the excess sum.</t> + <t>If the excess sum is negative, the bad sum is equal to the bad long sum.</t> + <t>Otherwise, the bad sum is equal to the bad long sum plus the excess sum.</t> +</list></t> + +<t>Here is how the new definition of the bad sum fares in the three scenarios, +where the load is close to what would the relevant bounds be +if only full-length trials were used for the search.</t> + +<section anchor="false-good-scenario-1"><name>False Good Scenario</name> + +<t>If the duration is too short, we expect to see a higher frequency +of good short trials. +This could lead to a negative excess sum, +which has no impact, hence the load classification is given just by +full-length trials. +Thus, MLRsearch using too short trials has no detrimental effect +on result comparability in this scenario. +But also using short trials does not help with overall search duration, +probably making it worse.</t> + +</section> +<section anchor="true-bad-scenario-1"><name>True Bad Scenario</name> + +<t>Settings with a small exceed ratio +have a small exceed coefficient, so the impact of the good short sum is small, +and the bad short sum is almost wholly converted into excess sum, +thus bad short trials have almost as big an impact as full-length bad trials. +The same conclusion applies to moderate exceed ratio values +when the good short sum is small. +Thus, short trials can cause a load to get classified as an upper bound earlier, +bringing time savings (while not affecting comparability).</t> + +</section> +<section anchor="balanced-scenario-1"><name>Balanced Scenario</name> + +<t>Here excess sum is small in absolute value, as the balancing sum +is expected to be similar to the bad short sum. +Once again, full-length trials are needed for final load classification; +but usage of short trials probably means MLRsearch needed +a shorter overall search time before selecting this load for measurement, +thus bringing time savings (while not affecting comparability).</t> + +<t>Note that in presence of short trial results, +the comparibility between the load classification +and the Conditional Throughput is only partial. +The Conditional Throughput still comes from a good long trial, +but a load higher than the Relevant Lower Bound may also compute to a good value.</t> + +</section> +</section> +</section> +<section anchor="trials-with-longer-duration"><name>Trials with Longer Duration</name> + +<t>If there are trial results with an intended duration larger +than the goal trial duration, the precise definitions +in Appendix A and Appendix B treat them in exactly the same way +as trials with duration equal to the goal trial duration.</t> + +<t>But in configurations with moderate (including 0.5) or small +Goal Exceed Ratio and small Goal Loss Ratio (especially zero), +bad trials with longer than goal durations may bias the search +towards the lower load values, as the noiseful end of the spectrum +gets a larger probability of causing the loss within the longer trials.</t> + + + + +</section> +</section> +<section anchor="iana-considerations"><name>IANA Considerations</name> + +<t>No requests of IANA.</t> + +</section> +<section anchor="security-considerations"><name>Security Considerations</name> + +<t>Benchmarking activities as described in this memo are limited to +technology characterization of a DUT/SUT using controlled stimuli in a +laboratory environment, with dedicated address space and the constraints +specified in the sections above.</t> + +<t>The benchmarking network topology will be an independent test setup and +MUST NOT be connected to devices that may forward the test traffic into +a production network or misroute traffic to the test management network.</t> + +<t>Further, benchmarking is performed on a "black-box" basis, relying +solely on measurements observable external to the DUT/SUT.</t> + +<t>Special capabilities SHOULD NOT exist in the DUT/SUT specifically for +benchmarking purposes. Any implications for network security arising +from the DUT/SUT SHOULD be identical in the lab and in production +networks.</t> + +</section> +<section anchor="acknowledgements"><name>Acknowledgements</name> + +<t>Some phrases and statements in this document were created +with help of Mistral AI (mistral.ai).</t> + +<t>Many thanks to Alec Hothan of the OPNFV NFVbench project for thorough +review and numerous useful comments and suggestions in the earlier versions of this document.</t> + +<t>Special wholehearted gratitude and thanks to the late Al Morton for his +thorough reviews filled with very specific feedback and constructive +guidelines. Thank you Al for the close collaboration over the years, +for your continuous unwavering encouragement full of empathy and +positive attitude. Al, you are dearly missed.</t> + +</section> +<section anchor="appendix-a-load-classification"><name>Appendix A: Load Classification</name> + +<t>This section specifies how to perform the load classification.</t> + +<t>Any intended load value can be classified, according to a given [Search Goal] (#Search-Goal).</t> + +<t>The algorithm uses (some subsets of) the set of all available trial results +from trials measured at a given intended load at the end of the search. +All durations are those returned by the Measurer.</t> + +<t>The block at the end of this appendix holds pseudocode +which computes two values, stored in variables named +<spanx style="verb">optimistic</spanx> and <spanx style="verb">pessimistic</spanx>.</t> + + +<t>The pseudocode happens to be a valid Python code.</t> + +<t>If values of both variables are computed to be true, the load in question +is classified as a lower bound according to the given Search Goal. +If values of both variables are false, the load is classified as an upper bound. +Otherwise, the load is classified as undecided.</t> + +<t>The pseudocode expects the following variables to hold values as follows:</t> + +<t><list style="symbols"> + <t><spanx style="verb">goal_duration_sum</spanx>: The duration sum value of the given Search Goal.</t> + <t><spanx style="verb">goal_exceed_ratio</spanx>: The exceed ratio value of the given Search Goal.</t> + <t><spanx style="verb">good_long_sum</spanx>: Sum of durations across trials with trial duration +at least equal to the goal final trial duration and with a Trial Loss Ratio +not higher than the Goal Loss Ratio.</t> + <t><spanx style="verb">bad_long_sum</spanx>: Sum of durations across trials with trial duration +at least equal to the goal final trial duration and with a Trial Loss Ratio +higher than the Goal Loss Ratio.</t> + <t><spanx style="verb">good_short_sum</spanx>: Sum of durations across trials with trial duration +shorter than the goal final trial duration and with a Trial Loss Ratio +not higher than the Goal Loss Ratio.</t> + <t><spanx style="verb">bad_short_sum</spanx>: Sum of durations across trials with trial duration +shorter than the goal final trial duration and with a Trial Loss Ratio +higher than the Goal Loss Ratio.</t> +</list></t> + +<t>The code works correctly also when there are no trial results at a given load.</t> + +<figure><sourcecode type="python"><![CDATA[ +balancing_sum = good_short_sum * goal_exceed_ratio / (1.0 - goal_exceed_ratio) +effective_bad_sum = bad_long_sum + max(0.0, bad_short_sum - balancing_sum) +effective_whole_sum = max(good_long_sum + effective_bad_sum, goal_duration_sum) +quantile_duration_sum = effective_whole_sum * goal_exceed_ratio +optimistic = effective_bad_sum <= quantile_duration_sum +pessimistic = (effective_whole_sum - good_long_sum) <= quantile_duration_sum +]]></sourcecode></figure> + +</section> +<section anchor="appendix-b-conditional-throughput"><name>Appendix B: Conditional Throughput</name> + +<t>This section specifies how to compute Conditional Throughput, as referred to in section [Conditional Throughput] (#Conditional-Throughput).</t> + +<t>Any intended load value can be used as the basis for the following computation, +but only the Relevant Lower Bound (at the end of the search) +leads to the value called the Conditional Throughput for a given Search Goal.</t> + +<t>The algorithm uses (some subsets of) the set of all available trial results +from trials measured at a given intended load at the end of the search. +All durations are those returned by the Measurer.</t> + +<t>The block at the end of this appendix holds pseudocode +which computes a value stored as variable <spanx style="verb">conditional_throughput</spanx>.</t> + + +<t>The pseudocode happens to be a valid Python code.</t> + +<t>The pseudocode expects the following variables to hold values as follows:</t> + +<t><list style="symbols"> + <t><spanx style="verb">goal_duration_sum</spanx>: The duration sum value of the given Search Goal.</t> + <t><spanx style="verb">goal_exceed_ratio</spanx>: The exceed ratio value of the given Search Goal.</t> + <t><spanx style="verb">good_long_sum</spanx>: Sum of durations across trials with trial duration +at least equal to the goal final trial duration and with a Trial Loss Ratio +not higher than the Goal Loss Ratio.</t> + <t><spanx style="verb">bad_long_sum</spanx>: Sum of durations across trials with trial duration +at least equal to the goal final trial duration and with a Trial Loss Ratio +higher than the Goal Loss Ratio.</t> + <t><spanx style="verb">long_trials</spanx>: An iterable of all trial results from trials with trial duration +at least equal to the goal final trial duration, +sorted by increasing the Trial Loss Ratio. +A trial result is a composite with the following two attributes available: <list style="symbols"> + <t><spanx style="verb">trial.loss_ratio</spanx>: The Trial Loss Ratio as measured for this trial.</t> + <t><spanx style="verb">trial.duration</spanx>: The trial duration of this trial.</t> + </list></t> +</list></t> + +<t>The code works correctly only when there if there is at least one +trial result measured at a given load.</t> + +<figure><sourcecode type="python"><![CDATA[ +all_long_sum = max(goal_duration_sum, good_long_sum + bad_long_sum) +remaining = all_long_sum * (1.0 - goal_exceed_ratio) +quantile_loss_ratio = None +for trial in long_trials: + if quantile_loss_ratio is None or remaining > 0.0: + quantile_loss_ratio = trial.loss_ratio + remaining -= trial.duration + else: + break +else: + if remaining > 0.0: + quantile_loss_ratio = 1.0 +conditional_throughput = intended_load * (1.0 - quantile_loss_ratio) +]]></sourcecode></figure> + +</section> + + + </middle> + + <back> + + +<references title='References' anchor="sec-combined-references"> + + <references title='Normative References' anchor="sec-normative-references"> + +&RFC1242; +&RFC2285; +&RFC2544; +&RFC8219; +&RFC9004; + + + </references> + + <references title='Informative References' anchor="sec-informative-references"> + +<reference anchor="TST009" target="https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/009/03.04.01_60/gs_NFV-TST009v030401p.pdf"> + <front> + <title>TST 009</title> + <author > + <organization></organization> + </author> + <date year="n.d."/> + </front> +</reference> +<reference anchor="FDio-CSIT-MLRsearch" target="https://csit.fd.io/cdocs/methodology/measurements/data_plane_throughput/mlr_search/"> + <front> + <title>FD.io CSIT Test Methodology - MLRsearch</title> + <author > + <organization></organization> + </author> + <date year="2023" month="October"/> + </front> +</reference> +<reference anchor="PyPI-MLRsearch" target="https://pypi.org/project/MLRsearch/1.2.1/"> + <front> + <title>MLRsearch 1.2.1, Python Package Index</title> + <author > + <organization></organization> + </author> + <date year="2023" month="October"/> + </front> +</reference> + + + </references> + +</references> + + +<?line 3102?> + + + + + </back> + +<!-- ##markdown-source: +H4sIAAAAAAAAA+S9+3MbV5Iu+Hv9FRXsmGiyB4Qo+THd2pnVypLVw9uWpZFo +a+/t7ehbBApEjQAUuqogmt7Y/30zv8w8J089QMp2xOzGnYiJlgmg6jzy5MnH +l1+en59nWVd1m/Jp/vqw6ar9psy/q9s2f1d0VZ2/L4tmsc6K6+um/ERf+e5d +K39Z1otdsaVfLZti1Z1XZbc6v97e3pxvN4185fziX7Jl0dFXnlw8+ZL+6/zx +v2RZtW+e5l1zaLsnFxd/uniSFU1ZPM3rfZvd3jzNvyl3i/W2aD5Wu5v8Qy3/ +++emPuyzj7dP88tdVza7sjt/yW/NFkX3NK92qzrLFvWSvvo0P7TnRbuoqmxf +Pc3p/36XL4od/bXMi6Yp7vLTapUXm01+V7Zned3k66Jd5+uyKbM87+rFU/6A +/tnWTdeUq/YpHrEsVwUtTkvfsM/vtvIx/2dWHLp13TzNcvzfuf5vTkOjb7ye +53+pd21X7Lq7XX1bLX4On8sKvi4WVflx8kt1Q9N6UbUL2o27tiu3bfio3BbV +5mm+/Sg//T8W/K35ot6Oj+THef623hQfe+//sSm6j3Xvo/vf+qnZ8y/cS7Nd +3WxJbD6VvBTvXr14/OTLJ/rPJ0/++JX986svv9R//vHJ4z/pP/90cUF/zXg3 +3UOu3l+RmMjKdkVzU9KGr7tu3z599Oj29nZedm01p7E+WpYb+knziP/w95v2 +0fevfjynHz+6uHj894s//Yn+l/7/i/nFl3P6w9cXj27av+tX6JNPF19cfHnx +eD/fL1fyKjkRJ/RxTp+f0B9fvazq8xfvL6/OwyEYH9airbr5ajmv6kcLOiXt +o21J0rGsN/XNHf27aA9NuS13XfuITkfx9/2m2JV/79Yk4zfr/aF7RAfo7/L8 +R8lYXr2kR+Y8gvyqbLv8dXxsfh5P5gl+FA7eF+ePL+gvb+/eXt438P3dXtZy +39T/WS66R+H7jx7Pn8wfp8MJH+b4cEavoPHs8rfF4mNxU9JRXZY/jQ0mOz8/ +z4vrtmuKRZdlV+uqzWmdDrwmOb16X7dlm5c/deWurUiw+dD9VcXmb3lcqFxf +f32X0fmsdqwpinxX3uZuwen0bzblclS3qSY7DTM5m8dlzItqi1dv6cnb6ufS +Xrc8NPzr3SxrD/s9qYl8a8/e8LMb9+yynWXFbpmXu3WxW5R5U7b0XfqffUlb +f11tqu4u5y/Q6dkXjf5lzotS0lJUpAjv6NtFS+tKx0IWhfWcW5AKoyyWS3o4 +/ZN+uFjznHc3pJn42U35j0OlIkcPLVv6B63I9R2+XH4qNgdMCAPpSLLo+Vm9 +IhW46m5JO59fFy19n7TurerjVhTC73ljixwC3PKg6/yGziAr26bNt3VT5qum +LJf1dubWlXb4U7WkHaYhV/zeYkPT362qG11Yugv4f1paX96GltU1aUR6b1jo +ds3r3jVVsaEplQ2tfLFkHdeV9L809npHu8HiLV+aZV29KfnxkJFF2XRFteNf +LmgxWFrpN/imblGb31Yd3QvVzRpPb3Ujdcv5Mbx4OiXemjC2m5oHhZ9/ou3j +r0a54GVi8d9Wy+WmzLL/++lT2nremv8nw1F5Tj/FCuZ/aYrtsr7d8e7S+pBu +62g56y1dF81H/mCGH+i3Oz5Ft3S/0UTs+tQnt/mu7vgp12X+qWqraxokTZ7H +35A00dW3lEt8jgeaNqALZfGxpteuaPVZvT8qHn355IsnX3zxpwt88ZIuUnoy +LxAJW0UrTkOgsSxnYbz0UhvY03sf/uTij3/86k9/vJCF+Ctdxn/jBXoUFyj7 +Xf720LB+gKy+X9T7Us+K/pm3MdEncjpI3BZNRfN/mBqYkYxE0R5ROV7BsLSy +flhCDOzQZO64vPzhivf9+X6/gTh8KnbVZlOMK7XrqiXVy8eAxm1PwyMyE03a +vLaktSNppcNE27lt6eI8z7+pdqwvdIxd8bHkydckfiz1fCLbcGj4oUs+Jaui +EbGijaSFp+fuugOduDuazoEVQhjanF5xBaGBPqH5Vnx25diYVsTG7IsDq/Br +WoKy3Okr6eE0WoyFRa/GBDZ9rcovee9nzWf9liS4au/SE8riv6HjjrNICpBW +jjQT6TfRACQOIupLNk8+QcrdMrPWY6XFUwp/1JnR6siRpceUP9ElRYvxc9nU +tE5kL7Wz/Jq+y3OodkuyY5s7GsmKf0tLR1+FumpFGrY8Rf76rt6d4xn8YHtx +mcvFJVpv5cdXyald0Ayb/HZtqxjUEy9PtaNz1lak9HadqF9/C5ho5HwO6AU0 +/+KaFoJ0IX0a9TFr/ESg2325qFbVQvaz3O439Z08clWbJtYLDeoFsvecP5lQ +0D29zPskkzHNzYrnPH+zl9tgczfLVV3TOf8sJT0PI5HJ8VAT5SzuTP5n1tEz ++fmyWq3KZqCmeUTPd6nMwZUo6OuLLi8Leo57HJ9KurF3C34Pj+Ny15beOFjU +RcOKGkaXiEf/GTP6S7OpaDK0TiQAdHfCK+EtoWO1wdZWW1oIO1Qyzm/1V/Zs ++qBm+wUv4V/RZ3QwyFDHCeOf/EBDeVU3dMxwgN7xWp++eneWFzTk4qdqe9jS +cq9wbHiLRCerHf+3/NSU1Bfzr+dPzniMkONiw5aSnA38p40JAk8aiZaQJBcC +vSzp2/Ru7IKX5XSTZbzvSr530zNMZwQHjGdO4ig3Mv5AEg2LIMiHSgc/6b3+ +BF+gDV1WbJ7KiVLrnFVb00LhQWkHdYvftOVGJ78uDw0NuVrgkmmLTyX0p5g+ +vFH0QjazxApY01pDU32qq2V+2O3KBW1N0VT0AlLcDUntNatcvive11u9zMhc +S04bxgkXaYNLh/R6PMvJ0ZWD3rC3tuufWTyFHNyik0dUdMrxiRz6ZUn2EZ0Q +esKBvksHqfyEKfBSJrYqlrimzdjQJQi7aHXoDqyctmzoydtoQnGMo7aezGpT +/gSVXe54i2mtgol9TXYG/5Ik+RN8Q9qFjl/X4sIpbm5Y7/m/z2EXjP+Erw3e +CZWw7MDCZ8Yo7QbPcFORKy4CFO7pWcaqnK8wkp/exYVx0I3flql5P89ewBgi +qSG9NjLQMBrozOGDYXfSVcofJU+O95C/FHBrTIyf9uH7mm5nWlCSrcSFqHbs +WZRLtRPr65Y0cHATnEU1Zyvscsl3yqqiz9/qNaOOHPkeex6pWVy9u0iUJ4vJ +odVpsKtBhnJVH2DKQ7TZV1JPxF1NFbtTLM18ydI14q0d1nRxQtMb6s2Z7He/ +IzuQXqEq+KWteGKWQ/F9R4eTtHvd0ID/Jgbqv7KZ/b+//svbJ/lff3z7t/zq +zcs3T+l59Ue5cuTWhRHRFxW6KkjSZXo05nb+r4/wsGMPJmubtxZG2UzsBtp4 +Oo8dLaqsuPrAJ9EzOYlPTgxpPhp0NEkz80o7Xw8ml16MZtLEDw97VZV85LLd +YXvNV9VKr1D+Kiwk3m5Wbdi9eqk/SM49beSa1c5uwd4tixkfcB54fGpfGNgA +VsuThJSOVLUSF5bGrEMTF3Zd2tgX8Ica0rXisbGLgEfNRVq3YiM7cxTWUPlT +uTiIDc63bdTppNTojIoc0YVzXdIAS3XXF4cGSzBq1Ts7jw4r3W+LTk9GzTce +XXcZCw2/7rxckQavMPhUiT6XQdCm8Vih/d0raH0X5Z7/97DhiEPBmnR1aNRB +i7o/u11X9BEfpE6vBjmjaiBAHnAhNHr4Wp1i9E3k7zO5yB+uPiuO6yxEAfK1 +ys6f7ETF7sKiQJyW3n6zwzVGjyi2JPHQV9gLvvP3vMzBBMrwEr6ZeUWLbsbH +qym7pubbkP4TV4vzctRvoTuubLbVrkx9nCzu37IuxQqXa5UjNTTmrt7vxbvW +OeO4D3zEWUY2mERCig07JXdkAHxiCaX7dAFLjp0WXJs8hKZYludkcWXmNY3d +L3IT09edNffv9S1bJzOxJlcHEuKvL85po2o+C2KBL+sDSUOb7jNGyNPbFmbn +trBwr2E11Pweu91pTw7XiE5XMIPEOXKjYF3K55DW/v0PV7qKMBVFVZGXcI4v +FC2sMBYndZF5/cwOXZKdwce9Jsmq2KChTT9sDpAPM0dpIaAn6SDt+XqPVtuo +ffp4/vgMXmX68gX5MvwduYl5NjYcGUN7dBAYAIemctZyMFk6i+U9eFxPzhJx +U+MN7ifUEI3rsJczVOwQ+2vgcNNnbCZgVIXForJBfG4mBh7/oSKdVkER+DHT +dsw4BSJ/w2/4Mtb5z/iltGg0xkuxrRdFm14W8ZUzfIGXWM14yAcLV823tWrp +TN5kPyfddkP3hb8uvIcNL6ZeZWzAlQ3MZ/yM17jeWzRPxk1yv1voxYIFY02Q +939JO1MfGt7blv7GorRoWJRZ8etgcCdtDiyMMJ/7L6LV+HPF9wFeYJOuMC95 +Jhy+c9LqrL3K3aeqqXesdzPS6Gw5y0Tt3sJksDP8Ibl9pKBn4dMt7ndSV0sO +pyG8kJU/0ZAqXNxstDW4eRdlVG/9IWe0xfKKsPLxK7W6TXxty3Il3odahuEl +qh7Y1L9h32GekRMJB5+vl1lGmnGnIa+wvaQaSyjnOvgn+Yu3P9CEG41QV2Rs +miDzFY1P8C7SMByQYqnq6ADkLW0u3Hoa5Us6Z6Q7OdCFsC5t4opOHDwI1kzF +QQSCpk3TwRKyLwULlK9+1uUV/YiuOk5E6Jr/vg2KwBkgczkDzg6emW+mz+Nl +jTqF9qkpadHUWCG5ZzHhKFY5E3uiWkn43f2cjwt987Cj0S/JQuAbnI/MLYua +D7RKuIIDWxVdtDusFU0Ej+eF4WPI9wwfoPKndXVN53+1OSy6g6yyt6yqjjyT +1QyXmGQa2owH0pQbOIcI4eLoQEmyQuDAAQfG2ESg+wnqWkN+sGzVeOKhcwhD +I6OQI9ZfJCtdSfeUO/dYXlxDrGNarHTGO3Rdiurjm5yvvbI5J3uSzAP6hK5T +MshncF/J1IDZI64Le3zwI2mhMxpSka/v9ryA5KrzABZ0OMmYZ+uF9QlHIVUv +yAxlJbEnJV/QOxH195yPsPeqK9P2IlJ4G8fhyYKqNmR10NqEJ5IJJ3cwyVe+ +J9OJBHNn3q+FB5biGByqlmyIqid18muyW/Lf44m/t5g7/zIomCxY02HR/ZYH +UVD3JGhnNZ7JwDywdyGroF+Qm+C5Woaw6ze2XP7hXv/T1lWI8rCpiqchhOW+ +LlkVlwmSd+qpEO1SRLXxnm8seAljD4MabltaKHNjF5pS10uBd1rEQ2Qp/JD9 +T12P6xLKpKNtpUtInqSbx2aDKAtbFBktnzVO9SCrQkaqaBz+F0coN0ty/DOc +eR4EBEQvYIiOPDc+Kf72mm/Ym011wypN7sQYZs4qjkTcsn0JpW/T6u8HnY7w +WbXrh9aCWsN+zvDrYPaKvWqDTddrc6ARVfydVjeoaw50O77ZsS20tAWyD5CH +4eU7Lg76YLl5VeEt7dLRTG4hP4UC6SnoPWeUyXaZJdPMFhv4fXXcMv7x2CjX +xZ6ci1aMloZO5eZOtkcCOzCf+6OlqYlMwjmTH/HKsKfCdjw2PO50A59RfkE3 +GudlR8fEO+FXD7ZUUG0ZuUW7m/5uPieFP/JkrPLEo9klO+w21UcedYj96Ftm +IhtwvMw7w2UqeY3krDKOJ4/PqRfkD8fgtwg0+TKSgNXlyH7YYWxm+aopdItb +MtF7v+eA+QImeKYmS/Cc6YVe5++WrZ+o3y+b9IyvJnLj6jZecLZiteSyP7Bj +i1c6K+mlqZ9rj1KiBeAQZbvGDQQJ5wBVtc1YJ9v9EQ3heMHAZOP/9KiQ6NFl +nXrGGlrgODGHgMzIqbzEFzhgTamWBN/lG8SmNZqa4YTTYf1U0L3EP0/vmv6w +2IjwF8UsExgAe6JAO7W/z50pCjUeHr0hu4wMzAOCI89ZJcu+35abzTmUcnPA +hR4U+kuxolWAyCjJDP7gN5DutW5T7srFx2iQscUw4zQ4qwmNiwVbLsN2TCgb +WbLpMzIuOiWkVTOk3vF3rrjoLv970ulNtWBjVEENbF3tFnczmDka2OpBIloa +vIbLELllW5dNwRCSDUGlGdZvdJYZrEADsagWDpfYYJeRJ9YhBhHCZC2hikBV +AaTHrpf8TeL8PqVoWBqy8z+Vcb93sswSHM5oWhzy3QaX9vN2JpOjGkMqMZLY +v/Q4r+dDa6YDhon+YnPDMd81OdM0B759Oo3FZ0n6asQlloADjZunCld+ZjpC +cqoZI6C6ksPaNLZFfbOrfnbBuNZis85zCEgY/o4ltjnGmZ3SbH7iJ9G6nB2T +hs5FazckrRuNUJO0kePCMYzUYuXAzrsBXumFzwGNx8wONzfsMyDNwj8fri5d +WPQoaJv/PLB7sSuzI9l62Bt0yPnp16WP3zFCwFIjGz0kdjfPs7d13cuc8PLt +kHfB1u/5C0lWCxdEXKdE3XclRwn41NbXQBEZymeALpCQrnnXUHUc/SyXtoPB +r7FXsQuC9QhYqRhgG40rJ9iu068vcon7mVfCoTK6CySbruIUDDqJ1XMs78yS +2r1DYPkxRQvF9D85OGIXsaAEj+ionVV17fix9Q5Dg+DEglR6SJ3EUDDpIM7s +J96DZcA20RoKAVML7gMXFJ4J2az1TTIv+R0Ow8BES7NM5uVxrgzxwYLxU3nB +Dl+IvyRaKxtxkcJdEjByATpCj8Xfbkn1w1xgh4DzgpnGZ+Hm8tAOfPOJyoP8 +JtuW5B8zAe14+VeVa5a1wkYk2+ewlBGxtyhpWcsMJ6uy5B9b/i5rjwXsJW7U +8al4/6Nu2JalbJtkQo6gYHZJ8vL5YlE3Bvg5dheYOzOWNiVXkDE5Za7xu9FL +Jjo0Th7o9pKQkr1+5BLDw9flZi/RF41FTqw/TSlJDu8YPNTpnX8P7FX3Qm6x +tvd8vWfUA66A8WOVhmkuS0aTWA7FG6S4GmUIO0mZS3peUXRw/e84nRZlI7Xw +ZxoAR86ePYWMgz0KkTgt5zdzMhJpfjdiMLJvvuSwB4ecMekzTQepYHJkQ+0N +zj9InB4JPPpJyfdxmpYThVB1LrHXT6OY6MekHv2FLGQSn6Xcdg4Qhu37vt6d +/w+GbjFmUPQw49rTYP6/uJ+dWc7D71rRCgKSD6MBbATh1GmaYcfgKJU/y3VI +PFyyDYzYa8hridhdidTLCd/hemyLO33P+4oPRCmh6jKkbAD5g+Jnv9TQ2QWf +RLrXsO7q57kcHJ0lem6OvKGATgvFeugFZxAsaABaz65e1Bs5JoArHToBq4pb +fJCLgT79uCOFzg8o2ALdhIXhIUmOpzCjN85XoiQCDKG5B6Mb8cORq5rTbXuk +sNhrnWUJFE/h2uoKMHbXJlU1BvcRWyV7XdORKCJchd8H7NtrUjbNLpm3otfi +FauqiJdBLI3oeWKJkEiNosWnIx7+W/brgpPMEOL8Sq4DWr9iyXvTsvLia0iv +lEKCT4g3BRMkQtdzS72bKbJYO/sA3n1ftzo3gWFNpUCKFKijQhPni0G+V/hj +o9e7Ww58H4IsPidiTcH7D7gujc3npqpMe7gnyQYmMa51gH0jSadhB3XKiqYL +AQKsilz/pgjZsEP0HwsJk2ZzJyi8ClDqsSim3Mf0l3WxbyUsZwuLjXJwY6zd +RsUewEEHRYbdiKUDuDov9jDrt0W8G338wPy43eib+KjxAZPt7kynshZVce+9 +nl78rrwhfYz56dtoSNWS75Ra6qYsrr2NpyFWQvDRSY+XoOFFHSN93vOrZJk5 +T36+4lDCkiNuo9eexsCSr+YWH28wbprAKwE8bHFhB3dJ8vAhAXU3WrIhRrsV +bJAnoUaQWMuGlq0ZPrDEUjQkCJ9YPwpsj5YhMVYVcyFLLTpv5xa2vxKcd7sf +tCpmBRsYKbB9xBrKgjWkZlAASSqa1TsD7h0Sddf8zsxZL8ADLElLFvuA7cZO +84ql2w44BvkNS8Yili7OogFjqc1I5XcsMj/L5G7UzS8/wfgUWzuMHVrb6epo +sOpMOc4NASKFB/+WzEMDDxkYP8HdyxbLQZbdDb5cAMrhhZJmZhNH7eGwDIOz +9Y1YJjoT/LC+/gTYG/uvXe2hbL1qEv4uVmONoADExx25cUkR5CcPKpqbZN5c +eqSt6Ix36udlH4AM0vXv+bSh2soyfOoiAGfFN0fmopgKJ5lpTBL58aZqPwJS +TwM4cF4KyIQ4mgWtYJbUDLiQDZtN+w2723Gjdnzvx8e1IyDiVtY9KhQ6XZxt +va7VcZSolljN7KVOwpAlF8d5u02xkExnBU/wp05cYUCG5VOJ/csgn3w50zwj +oDmpjyqGhMHaZhmHfQ5bUj13Id5Og7wz1Z2MzrkWsnsSOIjA+/gWGaBCgoYj +/Hr+hY2RJ9geFgrRwuk+x4FWrJUMV4CES670GRmxwBHZ0Oz9PBNhMKdTTHqB +GCYzszPkfkoS8K0oJANolFJ2YIGOLt7nOJin+CedjRjFSRflLKxbLima+MX+ +RTpPX1TEioNf9CKzbYavQWCSzioHw47EIpFVV/W/YIWs+oNBEtXuUGbuelFz +yMcTEYHunbt59jL44O24Ez5mmBpqISRoNdfAxhJ8xSI/7CraYitNoxtoiXt1 +fBDZpWRPTG8EV70XIpAyz38cCkFdyR2BpHcER7aZm4M3TESsTiPyJpQKpU60 +x0yezRQ1KXavxOUcUJ1fsCh9qponLBBziXn7hORg3qyjSIdVG00P+Omy7rzh +Msr8sOdIP6z1umk4XqcvwaqW2bTyincBI+7Lnb8RXPnAe18+oIBu0xIR0D1R +bhCBU7kAaRfrHacOsqWTLIcHscJTDieuS2xEAeu8WhwAnODocQw9CahUnZqp +McxHoNt/rmvJyuGtF39kR/GOZYpuo29ef/izKO5nCaqbIdf5j2+f0oXKQWHy +5N75QCuLzjvTgqJiH72XeDcKV/lB/Lubptiv22f5aUzgJQFbKeJCIP/QAnoL +lShANi3e9x9KVAeJxAUtkZgwqCEIOM0lNoBOh0Ik49vOxqHgZBG8oWv0U0U/ +yaa2Nm5+YWhJK+A2AJ6Dr2WFQPzJ0guwPE2ThERvtaNjKStJ4+Z/A12Sbjpu +qaJainKDQjm2+5mEGQ0uIHhoqWVcVmw58msZjbUrNvUNG15+0IDPiimHcH6y +U2b94eAxvBPL7Ita9EFqqrwWU8ih+hBDI5kTv19NLDOToLFfkPpualwNE7+S +yiOLVwPxzAu4jKB6fs5rmt/NkVc35blh8REgau4gRAL/4c/r5UGNTGyHhPPE +hnB/4OzFplpULNWAdLWp+XmqTqab1iU2/SyTcgC/krCW1QzNT91P3ohwnI2d +7ONFGVI28Uos+RtWAkDkCVZSt9NNZ8Zoja1CP/jy4qnx6dTL7kglRVhwErXB +nMVu7/3xY1nuBbRnYQITmEyuAXjaA6S5FamZlKGSRww3LzxhGEEKq9bQM9E0 +mMPa4KOKrB+KgTWuaBOS+gY5U8OpZadAwbGx597elN2h2bVnoYI1BKAVXmLl +R34kk4qH7RbVPOTi417opWIk4Ky6mO98DtyNLN08v2ymHgEQIJdMcryA7XAY +3RwJQlgqWnZN/xYYe5H58cnzA3hCyg43DAOOtxbQJgEuLlaF5AMWnL7SXxmE +W4oAJKLGZXqC/NdJscOodXvXvCyaE4cny/u1IzNib16tHgQyam/g+GMc4lMk +oQ1Zos5VWQjeFQk/tflOC5+dgU8e0pdnFkaQ9df4Q9VKOdPcFoxXs5VQqMRX +/Net8pGdcZa8aiVYJPWQJZCPcHet0USc5Kb3lDPxgl87X/U/xI5k93NSEIFu +LRymwDu7/wgPEESdGqGzSVMpZMIM+OHsHjKYBZGg+Y+Q06Dlevftf/xw+e7b +l2MKDBdEh4zCRsKZeFIvmiOhrjhguy2X1VboVhD7k2m2wygPKQkZj4Jz6Q7Q +zGHRukrtUPPNETkk13e0M0AKMbfCDfM58SIOx+FqUgu5wVrGeJupPwPAEAii +qoPnCG9g+EWn8jiOanBOxZvGEYRPNPyX/s6A7aKvim7kRQaXDw+KWG66ekKq +Dc453A2NMHq/nl7Ie9+VS/c990SFHusr9Q06SlKtFQfNEhkkAf/WCgyvyoar +M+kay9mFy08Siq0rYCgEpcNC9b1i30G0Reu8Y4PjpVSEnHCuvoMfQeqMfBxn +2SPzh5fwZdl7iWcq+oyXRNO3VacvInp4UnkPO+wRR15Tz2VcT/74FX9bmWni +E9xrZmbpwkXlbUUAPacdV4AUR4E0ayguIKAQ2XMcOfLSAmKx7SVhSfeUy0xv +VNracrvvVFdydBwkLn32EhQ5JG45xsSHrEEhEKaAwoN9JZVRNhvJhDh34mGu +EagqEF0QGALt0jx/rp6S+UjPY4KYXXVa6MXHnJFiliM4DdWtiAyTq842ypkM +WGlrULRX7T5yXtgqm3yVQAOcnbzjTGIdYSXmPWPvC18o+62rroiIFQwP4QSF +D9HqaB0gU99MpCfJTOM/Fg0uy1NxHHUNy+V5zbleiQuUS2REJyp5vyBnkl9c +Ps0RkkhWi4UzmKaavT3PH5Jmns/nblncDyU6c+oifI8HP3Sn5cgvv5xrnCqE +s5Tl7nw8nnlaqZvuGUDO7CcMUM6/vhB/KikbDUWjEptkeZknv/JVzfmp+bv/ +ONCiMn6JbJqiUQhs74cJhEd/e+yHU0v4Rf4qyTqWcSnuCZvmvbBpfurD0Phi +BRgIr6+O4bB79LCq2qNjTvkUgZx4GnaDhY9tjZMlh/BUT5yI8XQihBuai9oW +3dMTF9IwesG43c4QCc9/iCTeFrwQeOpMs7otU4jQd//PvPipao/tyRdBOKG1 +9xJulVizjkFNMf+NgAi17zCaQRHqwUxDEFIDRSxFzMOzixWKz3RUL7TAJP+u +FoKb0WP7Zfo92+KXDLwA80rCxhB++JgO3zfVsmrkv8G1VHBxeFhhcVnpqis2 +QsGCWCdWEVEr99DxxTq2uo/p7Zy6vwuvNVBni1iqFdeIV2Arcmn5Mb8ig+LX +r0gMLpNM2ukl/8/ZmR+Q/Oq9+9WT/I0jpclP3yQ/kvNpEfVycj++7n8zPKDH +iFMoyFpu0wn6m8f+Z40R6ZwdWdmLObnYgnSJmzUyc57xF+GrdTLz12++C+9o +SnK8HF5oVJjopT+CM0GCW4sSZqP8wM0/ugruIc+5LGZZ/ZS/OMPV1eq4RTWI +GWXwl4Am1Js+Fyh5VH4wcUdG+Me5bos+9cx+nqQc4oSezJl8pPfORKKZXdT9 +ghaTzwBkOX/PiOwztjck3tWalAtWuzVkI5AjbHxuafr0j8u3n77EkOgfX9tv +pvf6TzYp1mqt3+OBVH4lCoGNIqcJR8Six7306h3JwrFvcQU8CvyOfoee9D79 +TjoTukyutCo955Xrl6ifuhr1My1Sd09jete/5d88+ebz9mclMQurNuUU7f7L +f672X/N+CG9C2IAp28sZhy+V8UDIWRQcDM9uKZ+w8etj7jALxkN/nxeQ7A/j +VsF5eKGuz7PxFw3ec2mjPTD8GChKKRK+5LAE+Q351R25qc9AzoPcLNzRQF6i +ZCfzo0w2sKPFxQgBn8S5kLrBclvLOYdDaxAov5qcMtAsCszeU4D9mRnUWRRn +aoFzgtQ4hCS2OJXqeehaBWyoFBkARqJpu0pgkBf/MliJZLd+NKoZWoV7Izq6 +RHgcb4bqj+ARyYp6+1VDwBXH56ob5SYxo35imr8jDx88Gy/vuZ7oXCt/c/4D +sOo4w6f027MzJGjgIbWJp/lUCW1+HUPGQ9kx+NXhvD0FAtnxSAT1q09Kh4Dk +qIvczmVlXj5sZR5rzCFZmZcPWJlfQVxy7/RRYyhrd7g+jzkcqSOY4XkIbO7E +MKR/BoJHDk5MkcHBtcdgyK29swCv5kLYC4iAvrFQwQuLZYh3rJECLhJmSjhT +enaOeBOu5Abonys5Us+Xyzwuq5RJYRUQ9A9aYUqjv/6LetPfVD8XDSkmdmgr +Dqf9vhPwlpKk+Dy6OMjNasE374z/QTLxRw468D/pspNJIUgAz39T1+w2zRmM +aTgmfgGCoPys21I0nEUnUD2aPz0biwI4fXIl2AaAejmeE0NGrh4Twbk/Y2Wu +nh/RArDpkTqFca911j7JgovaMrjxPDzEl+oLP83m+SBH7wt4YjmAoK/y/FvO +TRgYAakhfgqv074qJbIaKN9ZTFeOWyIA1w0o7wECGa6L1OFJ35dQEXhisTWT +TMh0ijPdXatALThCw0htgVQjbVEL2k05xhS2fYKXg+Ac4fdAfCvRAKvDQhyf +T3qEsdvzGArJLIAbaAF6zvVZTnaPvvWk53KehBdLwvwkvhYO7BN+wrHXhuf5 +9+b5N021vImf8lPUiyhSJLmSZERbO9oFAXslOV9+xhL0fUpdFX5hoO8gl/J8 +GsZ36WxZDiAogtAJ0PpC0MKaqeYLHLBw5b0F2kaZ24prAYtlYpvw/s6l/MK8 +Fj0f6TorpHPt9N2S34rVXXMwWCFVuC7Etn+lD3RxW/o2+cvvDrs4VQOy8eKc +5R94z5DGcdIi1i5r57ZaslOviyHbaU6bPKN0z+DUHN0nrPs+lcnTTLIFiiTY +pp/L/qVztU6oiCPcA/qJbOyKWYmqIS2xJCo2G13LLQCClqUCuVQbmUy3uRTd +0ZX17tsXb16//vb7l9++HLttfpAQbBVpnI/bqpo/ZC5FzFoBz72gz8lwO6YI +El/p0imveJCVSapVWZvn33335kM/PRfhLLgnuNLJsTW50tk4WsmxAS/PiZ9Q +HpW//uH9FQiYimUZABih5sGjNbKrGHoEunoHnAZbJVVAi4OPT2tQmawg1PNn +WjORJOkvd3pfRfcoXtWzQfTcMv9ajyF+GlTPrrO0vQQhru+U8qxUOp9tQJZo ++CUbv7V6PqnUrzlfMS5cL+iAgSLJo6SrMQaoRWC4QTR31gPCSW0XpzVkFnr3 +90x8loGYlMtCRh20lwA/MS+XwFtCSBLT90pyCCSau3vfUZamRmpaCWvkKxZw +Cx+YhaA+t1TamZ5KNITPasPxC4nW4PkoLhdiu2/E5QNMu26sYCxLzJBoe0wE +QCeNEsGp40U16tZLkBVo0bfmprXRxFIJwCIYJuE6brPXz/+7cAZEIKiWguSo +WLxmTO5BcErWkGFXooKLV5SBMjKZGtzNl8oNJ7wUlrcP6g7gCGhpQcBi+/Vm +d9iatv8XOcChPYoUzTHAjYZhZPa9xFwfIADloQ1AzBCBPGi5epEguJL8sxM5 +juuO+EQRlDYQN/zRyVZPtKBr3TBN59riBUonMWSEEqXIk/CzFi4XKPbAceVd +vVa1xwgALRzjL+u+3hrYxcR/SIPMSGwmb0Lhamvh72kjehgyjyXqg51w+DmL +R0mrAxdaT4dnWj1Z5ngQ1eGlgU6nJbIjaYnZREYie0hGAiHRXxn7n/s8ukt8 +a9VWFiVADnqx1+RTDYfiVNyBoFbPlLuwQI3swMj43sfEjtsXSCTaJv2CLMsR +I2NU8IVDMoxeaMNvEEHj9VLZbpQTPxIFaTyQ0/qKvoRVHkQkwnXk9ovINsMK +mVmiQ6q6YHL0bL7EDYxCiY1hUqm91oCEScwUfhbnwmFISULadwCekwJDoZFK +08s9TS4sHKK6Yy1PUN9ZYH5BjwnRpZwJHnlu/4DSBL5/cxUsWS5oCBR8racB +HI2VFLhZb8kraDkDy/wQjRK47S0iqxHSTcnVE5UsQq19eI7K4of13bPckZ1h +7JFAJHRF0GgGWAJWqkqvqxvJ00kAGsELEddvhZj9UylnF0a0Qv92uc/Tu6IK +k1d55HtxmXq31nWa+GazEDH3KCzOjbRmK3axPUvD+snhuUwMbgGIX4P7KQpj +YQzICfU6+BlFlwhppCJCgvgwRFwwlnpM2NCwq96xnrOyVP91NEi/KstNuLAi +R4HeLTGWbuFxmvmpGFLnLbc2OrsnQP+TFMTdru+werelFsjykN9YX5U8f+y7 +mvWMH+PTIetp0VlZiTLBVTeelwaPMjzgZVhe954ncyE3KJdVEXv/6MFSdJK5 +o+KVHNppeDD4Jvmxl8JStRCC0QU3X0CZBcqdSMq8X+qdGSmKkaHOh/mh92Vk +R3cODV/sciLSXHBVk3b/HT45j5+c4xNJ0YHIln5t2om/b/8+C/AKnCwJahjD +akX2TTnANCVb/QKoSJ9JicguPBHb4OYh8Ulw8pTQpeGHEp4uAK5qe0kdXB/6 +DXZiHtKX4HtygxhCNldOqFg4UIL8lHUhrxU62SGyZoke8SXpEDGerWxEelIT +Qrf1P9tOSXyt6AR3sMpHZ5YQXACzlhT6DL9P3ssu208d2Vh7poPnLQgPiMw0 +hVVKd5C6NRIB2G4GZoNhXdgzuuC+auZq5Sd+Cx5fo9kTj1dRucGcE7JQGcO3 +u+W+rvhyQVZs8bEUXNBM0mp6WaB3joCGgmWFn6+Lzep8eaCj/RPdkftC+x2Q +HUVP2AkAt3ds6Jwy50PVbhVigyAWA41INArh9L6MPnwgEmm1AWE0TgKWn6VH +UoE4yT4OHU7zO+3YNWEZ3o92OIF1b4WBqMlhWnJFjTuadI1WbmgxTTyU5dfG +SDuxa9l4sHinmBHgyqMRbMhKUdvkXDb9ptifaK6T2ySV9PP86l35E3CSYPq3 +SgI/bw0wh11kfBWeomlI5sLeA5/PriGc7K70MdhQH6z5avcRyUg3otzGj+oV +j3qn55VEtAH2qh/SIbk8YdFX8hCawYlIuPAs0+Ijj2qt/4wUXlVaYInOm0Nl +8WRH7IFCnJcpUcF92Q2pGxoNceAT8wcHYPFeEpEjrdGpfZqNdK5z9mLPS5XS +iGIjXOM4g71kh11EPANt30fm6YkbaHsCQ7Lk3BX0QVoElUxJkedSFjf2CZfu +tGbmq09Si829iBHZ8QCSN4Ud+7xfPW62M203IM7LFrIzwIrlUvmikuCBYjml +y4fRVeFUgYVei23NXrBOQH07pV71a6jMnLAJhiCFqNe3Tb1iuqK+1Mine/l0 +SnIMg55QQbe6VEKjcczKnGWuzlULoI2usBd4qwS5dx1YF0YS4grT7FUYjDNd +54PAbSg3cPOElGoJ4NL4N4KkpFVghlmPT+Qykyb00GFtvL5Lrja3uqzwfDLS +STKoYTWQoywSs5F9TyrS+puebVkXXauLpd+uGjuDiltYFHuRMwg1QmtFNzbi +TDYrxJ3b5EsjMXE2WSKuZgXTRB2aSOeFlgZuCBkQtrJvUl+gK+6ku7cOcwuy +pQv8/t/f/PDdy1ylVbmZrQLdHeTMZ1XvR6mRlibXnE75cgSQNgKKfCiUDaVx +0kkP5QUjQ7XgrYuYzpSxTomYxb/o7vZlr7TpN8Ar/mKk4udiFEkruSkp3iW2 +x0oilNoHLSxWSIbSeGPxi9MOFrHRgLzjxEqFXT2WYepIqTae/moQZbb4DBAl +4+jlOG2qiOwLo+2MiDHHmY/ZBlfDFanbYi0azeeN6O34QPoUwiYHtQxalA8Q +x2BDnTrnnXo3SuQf+SzI9iwbNXm/4LKCwwYx4HYdp302m5Qp9ueZv6gii/Ms +Cc33XdbJMP0qASwLVVjRqwFc0eUm3ULgmCg12aUGBMl2vCnDrX0xv8B2Pp5f +zISHA4vExRBzjdS4GrdrrccPNM8hpKJ0h1pKsTooyba6X9eBPz0zCEHdMbt3 +7/dJGOC6dE9wGnwqE6FNkhPZo0vjZOqZJ+IHZCc+dXBTdsG7CFV9V+YT8w/R +EOYkBPQHG6Ih3hiwJUEU8wOR2uzUchK+Qe7Z+HEOzOEzcf7U8ANs34ouwKEU +W4mwqUAHKpsQF9gfFsdtYyCXFZnE3tOY7n8clBrDSqkkLKnt6pXMZCAGHomB +K/O6BCm/rjxHmTUnyS0AyLxmLhzzRjmANlZQN4jTvWXrhF0DRiLxmjyqe8EU +C8NxyKgXKjoa7MGPwM/FWkt7qqrvQMehutYeTNJzkHy8fQSPTLhwAmokGWhD +t8X22cO6R76xpNGqqBrQNTEL4aUkxLp176F4lq9gZIotZBXY5Zx5qkaxCS2T +DYaCqtXO3OKbfhMC0W1+Iq8/eZa/eH95Fagy2/zxBf2O+3EpeoV8atIjtCnJ +uB4K+/VQbImESzGPwhNWiky5rpd3z45GWV8bVLynEgQSddghMOLPkAStvw33 +9wjOwtg/Lt9arIcecBPb72orprbcXjMd4nQQ3GdlA8HkUOmPMUOGoiE2U8kv +ObRRLQ4OfN8leXxx8U/3/ki7QyYl4kV6MZsDUWygdoVZeiHjOlbM47OYw2Ie +7R/DmV+ubW562RGolcGqhRCgMweODX3q1h14nBPro75nr3ybYxb+osw0xnCX +XFsh5f3wHZNL2PUvRSxK0W5SwqrMnn18hzpxYW8yBSs8sFYq2aqpWilxpDYS +fK1iGZ7JZ/9OweYyJVfJ5+TIMiDpxdQbWZ2e0nh9Le+/vsbvjC/uvzEmlTE8 +tUSxCR7Y1OFSMkE9tXtmlRYhA84ytFCOI2WlcyyfvCD71qbkG3m5hN2t1J6H +X7x6Z0ElLvKXhMULlwCM1Zt4yqkyPYS79oo29JnEGiW9NtLcRA6OcPtE8/3B +gcwPSBjiHg3ROyawltaAooChWhCL1cyRUwITaSxZ3WuhvAP7w6dKMoJc5P+A +cQVOMImQ/DPdguX+n5nVRMb073QpoVPBrQE3NzHU+8yYhvInrRCu19KJBTcM +TfiLCyNDvO8yiMnco/iwMnzNI8UKqYsJ57/XCFCJlSPeJt4k8Ri6hjA9nKnq ++12MFK5KbRR02QtYOpIUxo3noUvt2MBd4zAXRYGrYtLdC/fqAQo8JZNrEvoQ +3vVWRrl5eki9LFK3iD/KPZ2F/mepdDit2elxqBbgGQMJcWhnrYzRSTj3YNS6 +skKk5Y6vD4eoNRcR+k1uSLbb7PgeYtt0n4yz5Josb+5TrYTpYFgmhcwtD9q1 +sFpwyE6wp9pcu8fFP8vof4PK4obzm14ckSvQJVpakV38XjgltXJGcA89JCMN +wOLx+SmfMtfPVaI0Byv4S+6N4YqB1EPaqRniDF0+FNkb9gFl18Ll1otPs37K +eAT0RTJFkZaPXSt9RA52UsAYTsnqFIYJLYAcvIAVGIiOQb7BCJEm4So8fjlF +HcYj9NO0Y2isD0iYDTiwNVMkGTKcHLnUZY2EiBvzjavCOUcwxbte30I3yw+7 +LdoYG9ciPkeOe3QTDWGCu/W6mqLn6C2AdityaEOk7UpDcNOrYPyP3D33qma5 +80bVsV6HEykJSY8HAqg0GZD1zdnZ9JLEdEXPIP2NM17K3PeQlJfN3OW8Lnt5 +ABYlBfR6Q+LUrpGzBK56dTSYLpq1utmxW64Sgm6ldyP5qyxRl6uCbOSKcXAk +ALOM2zntO5Fn6+w8OiVTrZrHiDFWbZM6fO9TTCKC5X55kCtpWRegYMBV8Fk6 +LQwHfH7Yy3KcZRaEvb7zHscw0xWw2J/J16A2ofYu9V+Ra9kKXgTgCFXUd598 +z0Srv/CYvXy6GHJMk75nyeo4qmlsXROmff6eu0Zveko1tugEpfuIjnXovf/m +dZgQ8aV0vdKjW0WC5jEgxJyM+Ww/gopIyyNdgSJiUA5yrNkIK912BaFcD9q4 +/1x95uaKGf9CKG9BkO5QVQzriUgqwI6h8baknQ+c+D0Xap6lxKcmFfbJLwop +5i6kqMCZQVgx/yVhxV8SHpwIDeJZR8KDJ/ddMUKjOnrFROLFcXK9Hl4izdeG +5KvXcL/ZpZEcgOOXRpfMxV0aoor62l6TpKwbQtJoLG8mPaI9aZ8ZzbgCOCJv +v58i3UPdxG9YNOSKvIOhhXrt0QKi9TiHsMu63qR1HQL/06CNkb1qLo+hO0BD +sfcRy9BNVp5KLMF3DYEIYgVeVdHJn/BAnwPmTydxYyoflnW/b8GI+9hjbAzZ +TqsEmsdiaGxoOoxYKomYirBU81SmB+4YIcF5dr4pdzfdOngZ/BJlq7NrXpqj +utU5c6PqVFHBnnDP8+9x7GkovFspOG+msToHzGmN/MBHlj37mnjFdrVIlwiO +K/jvOMZUa58am7OkdLmcTw0wa/WN/TQstJ6wQUe+gIB/NUwDaOQQZAh+XCV9 +g3hCg5svr2KckQMTfBiyRBv3iA9xgTl+adbF/J/n8p9nI+1uxsNd6vvZ4ESF +7dEjHgvHK5sNBSQuWzgfQRjfH7YPOhdJtUULdOSkgf+LT42XMmlXjy6pQoKg +hVTd8ASQfLmmvwXwo+xn7+UwVNo/XMy1gJ8JjTrMtdXoz2B90BWauwW5yObk +WZ1l4bIZjhODc9H94FQOuodAY5JNe/X+6uLiT7ma6jBb8Jdz/cuAnki4uF1P +mcxzIowMadC3xNWgQWUM10P2Twid71+R7NS3OmPBPeOoMklXyydeEEPa2oq2 +KdCEiCXtirSxIO/sEvoBHNLfsOHFy2J/P8ffz/F3WRzILcspx7F2Zn2HkzCZ +tho/B303dyDrzyfEnIvqduxI8UkBcbc2YcEK0tU2fmu4lJmXwWK8cVtyUzB6 ++86Kevt3xOB+6B2/aoUnMFO4BK8RDGYH1T1WFXvYk+8gEt84Xm9TVYaWTiaN +a0ilnbvNRQIR1CXxe4KpFid163gtZxm95dRTJuK9Y+2v1K/sM2N6UfgWrZE/ +QxgSpahdALm7zRYqfyoS/puKDB8KuYSS+g6z5+udsQEdGGX/PiGXRPgS1l1+ +aDlSGpl9sr8GANvzp1IJ8SJhjOczZ185f/5/PYUjdZ5+R0Fp4UnfPJ2415KH +fUMPc187d1ydAe2oveMhQGHoU7zDuSIBSISz49dwcgK65FVe6hW8KlaBZkEt +HzbPwobzQwZyJZ5PzOPCMxxo5cwFL/XVxtfFw5LkK/oAGY+/0F3xh5+nIr38 +f6iW3Xog+CKTh5CDjgdBBG0BGFVmZZmMY+lXY7YDrv5BcnhlZeGy8A8yEbDq +hkEvRjohwJ3ENtmtH/oB9Ps/XHlsMfcAIAWIziSiv9bAZRYLxsehj7hri94P +FMad8lZPhsmg7r7nJgmoipMg1kKLi2O6dEDDFg/Pr8E0o9Lgcovi3W1EbQw+ +1BZr+3oPrbVY10ykphT/IyFP+gJvm+9Opj2frJPlLYvNVPYIzOJV5GspugHm +9k5JOyBfURBDy8QedUGrnbvjN9HoJcw4TvZML0WuDFCJ2tX9K2ikB+nplWSi +20FQDS1ayCpLNJcnE+bgJuftUW84P1OavHjLjkAzPOHBRFikV0XSqi8d3ehZ +NiC5sZIdtFSVfyalJ+dHLLbzESfhfGAunY/dmm9GwsjnqXpJzn0/Lv78v6OK +QyC0DExPg+oQxVHIsSpLm7blRFORDr3gk5C6/81kvDY2z/TyKFZO3Q5iPix0 +1iBzW0lcXnXh9Z26bUKDy2KGMj3NZptX6qgbGUCebJ80LtFqOTHlcHHLpKsm +cPOpd5bVO69QokPo1WnPjBjJdZBoH6wNELeo1X6ImeE6xqg7AjVIjxhnfBf9 +VkCk+8taqYq45DM09L5IQdzIPQSD10rEfC4FPTSgY9tYcI1DC1x/V/bjNTaB +qBX8dgUeUpShBVaf4y6RtKtN3xrWiVVGv2VVT2/0P56sIgrrWbSCJ4lRhDT3 +f7UOvFj9/J483PoFJOrKRT6TYz1d7c0H/DB1iP9rT3j2KrH9rOAngECY6+MO +ObokxumKJrIChUbSQWU3bDwWFkyb0oSQzwDg/znVUaEVQWDjYpPQt43xIzlT +9QK+7skNFZYC7HkMXkvVUIG6/BibG8bHTvmStLjzXwef850Z/3j+RplSxAQ5 +LjkMYlENZziG0LuZ55PdP5+hIhrLfeanlnaBvT2U/fYsu09X8S6+Ln6C9zTX +zECEcqwaaTxLIgXbJxEksJptuV5vlhUbUjrLO62Iktd9BqV7qOF4IKG7mhJj +piAXEC466TTbLoBZrDqHXzrOb5NbIgFdDazOHbmEmOY8jgwBNo0nhE46rhbd +VZ9LddY8YgsfSmn9Guhsa4jNsnjJ27X7qIjteUDHcXLJUPRrmrqmOjiZqWm3 +D8+/H0vAjoG6QemsUmJwdzczzj1JvVmshjaiamt2+vKHq3MuaEYzm3ke+KaN +X4qjLDwPemzDNUdkGxf7VhG+inQKsJlrWl9Y9JHWprGSqFaDflsaL0uXwC9h +SPt0PapMzt/biKbIhy6PUAV/viPLlgHdG+alNgOb1/oluT7RVQf/pB3aRplP +wtHJDzs0iYP6oUX1uc/Izzj77atHIneGHtr2sKWVqX4Wi4GuvlRogrwIEuov +IO4NJe7QJY6Fo0Jyb0afcyvVND8/6kkZfgmB2UljxZiuuDACmR7pdycZ5zdW +hDHzrfD0pg7tBAPaPYTAkPgyJ0xKlV1XJjXL7ri4wTAmcuEgopU2SZZWnkz8 +oX/R8pVXfXhbPyBIC8LBwJmS6yzYtgMbe89Yw8FgGK99p9VL4WO5qdbMJjCs +pV7U2qbnTqalyHZZdQ37yFkaRogAykWod+CFKT64lrIUo0mRrqkWj+9b+bNQ +77Wrq5abSgvwgGmIIwMCDmDXHLZz67DFyENxeHr0ScWnuloy+bCt+qY8kY3X +olE2fXgf8SAZlnEo0/RYsypQvJRpa61GbIcNIQgtzu2XARvdf+Scyahu66Y1 +ykO1x3cSfXBLwsvEmVcOZrMEKv1K764TBtk06IBE5Tr0ejSAdZxnS7u/0Lbz +rXR0BpWmclhFRzG0AOMSvWpHp6tiUmfZlOu7zo6NNj7KUQqJh0soylKOSfhq +0FHZW0HWt15cC7vFJByB/GfoUabV6uqoTujGtG2W7wuVpX2hfBOvfg+v7FgA +Iv+3/OsL47Mci0aMfsEd7X/LL/5pLD4hH/hSj5SRQzjAQkv1vvjw+mcTc59Z +52v+PrbfeZ2yktWRpVOrXKbk7dDB3M+Mh5M9nc41Q8+EaQjKkQcSMx3DADNq +MqUZfXIKNTNHvj+QCW7u6HTIctLrFpZZKQNO5TksSYlYu+w+fi0HWr7hRzTI +yLxKi96LDdPdT3I/w74JyqJYZgvf9FCZvYrWdS+LBHJWRSVZVjkRb3bBayoi +mylis3Z0AACINLKZpmnTsnuuq/7GN37TjoM80U/cz8OyJJrVYEYcNbZaATsD +BZyk25g6yvQC9g5Pq437lb52NzPiVo/kQ+i9MWwI3wMl1ApfHYN7gK10vmp4 +zwAOs/t2UyaX7QaF7TtFzDNtSmgNd/IznbRqh4jF3YnUCDGdHZ6RNlC/r632 +jM4MxmqQFE4SWCGdNO8dGtqhO4N4Adwy4RZhBWbhB6RLjHd6TzRBb9jRjwA4 +hSfakVYZkVJ0V5Hy8yzAaWjWQP9ZfqRe4UHfkWt62qCDJPtMDXuV0FU/OimI +XLALQ6BzvZWhBiuBSSIhgX4XKCTgtqU0RBYxL1F2xk+e5dW8BH0wzM+gJYUH +S67OqzWfha6dcJOSMAWL3UlDW/vkxPZbTHV/gwRN2aOwf/qrVf7jJ79Q53/F +Sl/hHaKav7ZKJmR2wlEyLaNXAKzuIB/oblzvs4gjMZC+VDDTg6RQyk6jO7qZ +FKK1DNylIXTmzfGIvP6l04BAsx9ryIprRjyOSPqkOtAVm6lZF++RYJFqmvDO +59yft+NYl+6WKzYcOO0I2IUm0SxHMGnwRThAILa9YBMlz2roxG8E7Scsu3rI +0jrBGCQydHWkdlfw4q3R6Li8rtIUD/44XtTAIh6E1yWN9QUJ7ZGZddc29NCp +tz8E9/gr0+mFA5EmRYA+rISD7Z5EU3ldt2FJVqNjRe9WmOZDXAdqVHdxmT2Z +1Ko/7jlHlvliR/Jal1YviWgLzISG0Ke11qBma3sw2eTJ/GiuVTjEEKuKsdZz +tbwWUubM/QraVpTgoFm9Vt3206ja0bhNxL2tFdbUagTchRIyIDg8ZqUPkumD +COdDqUXB6nBNof/kBp6UXfUMqsBrr9bIWNhjJG849jVDn0uOM+gOX9agd5XH +DUxss67YAY+/lq73SH/+FtCQs8yyEGNIpCSZwAaZv1ZYXHCfAY4U09KJqISU +hxs+qbxJiU6oskRgPMOjLegsg29vRz5Aot1b1NUrxF2TphUOY2+SH5ovyxYZ +ivoUzr1YOqwKnGqdZXothTTvYlE3imwZqvKzrAcv5NS7yYUY4TQcMWIOexgs +RhDqW5dbcm+oWADMVuuvnxsWxPa1kc3hYIXv+dt5zPx7Vy7W5eIjkwwJSxnt +17PxwNjT/FI7EVzXyE2A3VHCane8UFFWFbI+YedcuhhfyPhIlFBX/QjuzZ/A +8GPg6lOFStf66G/w1VBChFwT0raasLo39vi6XFZ0d0eTWWKX8AzYxsVBOQwD +lFyWiKNkJvQH3qfdqGNolQjFiHcHWKtQWMtiGb9p0MOKJSzayWMjoZgfUJ0J +FACybQ8An05nWXUQdAYW2uwivUhyVDXvhSAXhHiMP40l+IOYKc8RPOw5B8fQ +RiWQoEtMnnyKQ9O1aUBSETkuaNkP2AzpHYyknSNVHZ2HHYP2gi8UwOrBT7RX +9Z0i3zVFN0G4E6Eeha9/IT1KOrYThKNmtan2bYxkKrt0sl0+dg/A1LhZnOJA +k8U15D5vjxSIaVk1tGUA8UtI0F0AbWjUKQHQhSYF5X38VB6+mEMiJ6KXT3kb +rovFR1GsTO5zNp/QKi84G6cV1YqC3alFi4fjMVgftGWzRUyLxaR/6VqiSeFB +qQgKxApUZiO8mVYa58wJjVFxI61NBb62qftb56Z+T3KYXeg7ubrSWf5vEife +lV735adwcnD8z5yvxF6IOjTpFIfByd+NIoaPmTjeSFMTByHyEQsnK7a1ZVOG +WK8x9TvL9LbuEuvhmFWUyhUZRb8NXvazjCLGImCqYq24qXaTSlbuLVs6hZHy +Ce/pZTe9efYhhK1C0G8Ww91efCSn2/5/y+ZJZiuUEP/1Ns8lX/MypDX9fzAx +PLhdyv5GNwUdo5yRMWIS0GgghofWM45JCh88EE39UbjBWtGMHNHaLe7OJlKQ +MWVN1q+OnOzusTLgpG0NR4xhTbiuasnxCQyYWBKZ+TPTXHda/LiLbUsYfcod +BSo710caZL+HlCaM8hpaeYDtdqS4AenAvqWXtt0KVlvibA20hwJvp/oaxsB2 +3Ptbi6qtRB8m2klwtPazgen4Cj5vU94A/Ov8c6sGUNiQb54xqqytEnd0HYH8 +5fqd63K8cgpQULJ3VyMILgGltAIrlvVKi0bHxP2qOZRa4CfFXmz3kTIWptXN +XSrU248WHi7LrdB/6HG4aQp2HeTmPRnXFl5TnMxclFOCMyGTx4YWjprUhStd +/5SkYvsstk8L2jN6xFCAP1L0lHG+p/NBOnwXQyMmYptxAdyldwI6PaKHtc+j +3CO4AUUI9IAb6bzfy7NeTYqRUmC0Yp0jsO1eMUp8Fnp81CGpfr2pyRqrUvv0 +t7d/k1vx/xfmb2rc/S9q/34P37VajrizbLG2IybrQNjHbNgJRrqhFTtRy5ui +JH+7IqmzDIkIml/RxdUZPX1TZs5kSHDYk7NXjSPsbXd7odAc4/iZ9WljOOyb +/ZJRaq7EASnlGpU6YSH1bz5JUQgzdWzROpv1Y70C0fo01tQwNXy08xtQhPH4 +xaQlZxtNZGsRlI6Bxgt3XkS0tK0VgzwYmlLaDcgekw4mc0mggSlrpGeBZbGH +SDGCN2E4le2WgLQLB2QDcBSbCzFkOrkC92VlocScXWnvOEh4Y8qEfL5c9vtG +ecaQNn/eRRnA7reGSxyH6ZJs+CTDNDGJ+9bIEX1AoujeGpx5NmoL8Q6M25DN +KJnWLJvQFxiXFwJvECWncsDsHznf5ITEPnN8TyH03QiqrEemlmnDILFwgT50 +qjhyS8WEzAjuUtFEeEaG6vJQuhLKet8NLdLwdCAaboX2j4laHNDQSvIumxGT +dpw3NXQ/pJkyEGDFTixAYcxaxI8E95A8zQpljrfmHK1WULNQw6L9ogXF7itT +87ANq6Rpwjj8ooPgQCuL4kn2coihTrAWjWHdVtztNOalulB7FSr16Mxyu4vW +gIPV6HpL6T6QkMMywOajOPDaDi70cwpPSjz7zlHXTJzq5+GeGd196QpT9tkC +ZfHFK5J6Bpf81/D0A3xDwd+pszdeqRgavLi1QEqJnKz9ptDG6sGo2bOr0lRo +wsigf7WbJhDScTgMO19UJGLr+nYCl8zg9fuby9I6cQ3qOWeF5vl3DBjna0aS +lAH2ySB7C+xN7MvuroMjU25aFvwbcgD5P8fPKDmBAccugtfUqMcaq3pNjRHW +Jb5KY5Jw39VgTt4Ayeeia0EM6XsW1df/ybV0WptNNn8/DZ6Q7RXTyXBfB9Rr +tDRon50OTFPl4bYODh3KX7iSg5XsMLEfK2E4hCVMkYK4OFoGdD84S45Mo52W +QvnEumi2A5l7nPQRqFqBE3JuarTgayJTN9ytU5jrtCN7cKyqwtlLHZbF98bL +gqwX+YANNzSI+pymzZje27rtmKpqSefq7aVj8+LmUtt6yUeAbaQHlqV8r4Tw +5XLQJSBZz/cpOA6IssLSVZzrGrtMjhhMg7Ktcc9mSI00ajwZPbDsSbrURuce +OmxNOh8jB9UOXCX4k4kSxofWJyLzaCyzUSbRhGooIoF/7r9q06YfHJWtBNmt +nRPAmVy+4xh31DHmRjKrTXEzcexIJOKqPedYFUeSD005mo+m9UJvJ2NxJOPx +pTe4AFdESwHtaAeOxhbp+/vYgbm6xcBQwEI9jXTrrhZG2dmrT5VWZWlTGbDI +aRCFizo6xuO1emk4CUcEkCWurVcdersVbtbSTKq9a7sSmGvRI2I/LMu2utlF +rm08ykFGAxm1/LrtmoM8EwEaa+stfT7fF1ilk7j2L/H0E98x1lMsGL0qfv0j ++ZMfax2Qqfypoisx7pKwE5k/LbgD7fcF+AMnj4/VPivLw7HGIfEZybKql6VX +PRumoP/TpYr79zRzKmPWO5mzsdaMvJXJq6SmRwvb+MuyiVI063pSqrzAXFML +kZ2qwEUpTZXkEiJD+TxSFfYaYHK0zXqxYYK8GoedmXQWc48vhXUemUA35Yor +CEJrsB5vHKzdKXtRHYs2P/HFy/TYNgzvxAAoqXvYU3okcfzy1qts1uALu2hD +mbKjjrQaUTmk4A9Jvtkr8lcrR7pv+Uq8kduj/+NZBk1H1jRi+cIGFP0k+zvL +6abY3Rxo/FZ0H/jzhzddHCqsrdAFui+X2tSdd0J9W+EhMPJZWBWRfRb/eeY8 +XU1ftnDK5Tfh29qQTa6nNj4zVlXLQ62gesrIvEo1nbbxbHtbwqV+UnhcCdVC +9TNL3GVEvMzU8rPuBPG+pDUh63jQtVO3JiDd7cIPpe5ps0tru3daVjiM/TJ4 +qf2G7pYjmB4+Ez4pgQ4Li7bD28M+P037ZQc+aPr1WfDoJKTBNrzx6Q262vZU +YMgVZWzY+lyRlNDwYu87ZdgIxuekTsaKjQVSq1pjCyLJMckmvGDBz+dU2joQ +7bGrv6y3ieYYbfF3MZfyhDuJKUqfca1GOMtuUBEj1H2HmxvjQT41ik0/7TN3 +9WXmPjKrAa+5uS3aWmvABzNSihdINruEByBzFyxUtU5VSv9bRSIg2MT6p4hq +bopo6JrugrUFLnocyIoEl+0h+d0xYlj6jyvaCyvWBCnMA0sDiwU6cok474tu +TSebTuPSElQOqUv6iXtkl2M85ZoxZoTYqmiyoBtDG0AtS/AtJ7SW17R3mh3+ +4Jt9iuQXaEk0G8HCsdFuPVGYECLSLmU+eZwMJtyZ6Tx2XaytXQ54D7lUzTSA +ntjbegBkRNO3YlnK07z8AbJr5d66ZmhOwTMo6dIK+iht0sWTElwGxyhUbGgR +7/KQgF9W7TnLKscJ1LURuyEoBxPCAa3LcW/ql94yk4QjmaQFyuXGyIdIojyz +dnCk+u1FZll9za19+9h+f/e46AKULSoTpSVUvK1GnMWJC6rPwud+yXUGvDG6 +rogTkV+xsESzm1Ib20730zu32n9MitLKfnyAWa/l2mL3DOc+pKzIX5r3t+v3 +bQhacYpia/X8g7Yz/OtsKUmEAycvfQ6q2NxwTGW9NYZkjDqkflETseRLsk+U +Wwzt8ACRj4bPKImc41CzxFkNSnBcDL3bvvcOo5jUFIFgv5BXS+qG3rmsrfqk +Zm6p8ThibalhcM8xyK2YgaOrOzFZaV0ysyeie+nseJwY258xsvK8hiWmOfKc +1VJQiD6WG0txRFWiVZDgN7Zo7pP1m9H1aqK/nuff2BVjLPvSmTm11tx6BEss +uCGz1Bg57Xkl4KML9vNZZqA0UISpZk6YZ4LZNr5M83RAYy0LUePJuvW2LD7K +bTfGC9YG5JN085VFRQ+evVCJDDNISu2EW4+fXk6yzqQdifKAcIlgHbsCyGy9 +p1dey1knOOG6iSd5wopvG+8L63XIU8UGfKzoxquM77sp3ciK/ISx+if56fqw +RWg3f3F5Jjr/RMArJ/zHE7hvJ2nsLNoerZPLebJr2tnXNuq6tFtkK/Y6jEhk +9cRZuzcKGmt0d3fcz1RC/0X7cbQLiRsJuw7GQpLY9QJ66Tv9hui3ckeLHXHx +hAS4GJdy3tXnwKeIUekaQvXvWCg8WqFNsUiRJ8KkjomOHtzHuWelnQyYpdZs +/kIr0Ok65iwJHRqyZOTsu1Yy0rg8plRjw7NNfaMkx8uSzibu85FFUhXQCNmn +iya0NIzWLHrnlwyv/N5ShWiKhVuEn8yK61WGQn19WuCt0SPRHG0yoH7hnyr6 +vnOEvndqloZrcEiaHxcqzd1AqReKeiWRyYp2cGb68SMojHiTxRZNw/x22yMd +G5ZwYh+skeOwP/ZguXsWGXhRes2cisDJtOxzyfFqiQgJMMPTTZxyn7yUguIs +ixsXhT1SJNjKW1CGsV7k+nCZFSJe43E8tgPI0dVTJekhBTkjmN6JBb+T2Odk +1tVo8L1qBQOU/Pf5n8Em30OU8A7RhvGup2ih5ypHUYgshzsys1M2hCSolaYn +6tXZVPCSA9BFde+B6PMO/s5DCF7oudJQWNrEZUW+b4sYhQ+3LJKfzPo0ndu6 +qz7p42hl2ZjXLLvrmlCSc7qsScOMansO6DOx1JLWaJD1Oh6h9yF6LrKbiE9W +Wve7ZHHQAHryDTwgLchPDVIFcAr3z7rYg90lMrXh99s7R+ADHEIsGy66h8XJ +j3fDdr/6UeC5rZpMQ0NfvJkS1dmfyk29F1uRE2jL8lw5ZBgXUHDsrMjf3tEm +7XL0ZWIeCPs1TFRGsC7La47G0L8OSoOuK1op5+j+YKBJ+uzt3dtLH6STF0pR +u0SoMqn1McDOmXQxDA9RAB7/lkcsxuca/rOmQexJZ+ihWH6qN59glHNkRFyp +19aaQsHMIcdvs8QrMR38as9IHQNf3dGCqpsnrEgYBr/q0Ir7KS2Mt3vauUA9 +YsUDfqZq1+L3tDSnCG0ZvppOvNs+G5hEp7mgotlyZ6XMmQ9WwH4qXQIEuqj1 +LxNEj+3ZLNuUBdaHWar3hTrjJBvVNCjvZXDwGKDDzy9/AoZgA/I9D0+neV38 +ceTobj9+oXB4iVhqDASgD52sJMs8k50hg8LX8To5Gx+kqDR/9bKqz1+8v7w6 +d2c2iBODHJ6G9iNs1irqpOqOHbEhHoEWmk8FPX8nvdN6nUgF0p26Kra1pCy6 +urkbZGn7bezeS5RT7q0tlxqDDq9cnoPpndZc6kFD5o29/EaMjhnezRw014IP +p1WWZsFmriMNsx05CXjUQPRmuY8lxg2b58+lXzPseIcoEgtYNUkMX7ElbSTP +QmwjLBLxhTgPYTyVKOFXL+dVLTcnTrQdTd5HOZGKSbH4cqqnyetlbk1h+8NQ +/qGN9Bx6FpbWisly5KaqQUpVCrjEDQjqXhbc8D75Zfd7WruPrlXuNd1raf+n +y2+vXo2lP9WPieZzEPQNxKwNchbKlvS25+KFDf2/Mbk5/m8IeHKFTCFbSHhF +IumFjv87bIisrPQARWefwZUyyIaxTmGgC9tDSF5EzbI6iNWyZSnQYKkdyEUt +OKJ97dC9IQFiqLXBCAYDmKjv/1hyGQKgAAvGw4hXovL9KEznUfq0R/2cZtsO +CnvcodXK16LaRrpMRx4FfLdgwgvlOZXOh3Y+Ag2lkojrARLNqPRQ8lguTttw +Kp/XVgwRMXhyYZC9FWGyjJqjlqoC9oiu/50wKBkDjYaByPbmZ+k7WtMa7nR8 +e/W+YoKqOTNUwV3Y71afGHf+ce5XoQoetEI9I6zgRCQLNmvJGEQk+lEWIUWb +MThZN4qdUFiEurExXwKdF/kpse60cbzm6PfqQoyhxIOuhVzppW0xpRlip0nj +gbmIEA/Qj7jEP5VWFsOzBWhgRa6Ooco4uZBuWxleVHFsDBl1KAmlc2Sopl3I +/sw0nVBX7je162dc7Xb1p1A8wvInaoAjIeLKG0+8V1SB7mFqtfVLWoBEX4LJ +IWFFZ7NjZmiZrZ7RLDbo0JCB77YaJxykalIlmSLkpAtLRwk/GvWa88htxMsJ +ZYi6Jbp7l5yp/DnQLMj60051UhlS9ylbw5MQpguP62olHVxtyp8sAwvO6GG7 +Bd0CcZhVqSEmL6eXRzDX5LelEK0ppjPOW92M1PmAWb4tdjursKbjBHlaFRV7 +EdfFRuomGUSviwMaTou6B1A/uQPRzVbxvba+sKIRNbwlAH6jleVP423kE2gS +P9gxgirJq0XLT9PDvDVSJT4DkzqY5YUrnPHPagPDdB4Ce7hxhWcznGf/bpWG +kRtAi8kzWUJfZKhfNDLT+F1d7qTYCqirfbFzXKQ+p9jhmm3TimiL4oQPk9K3 +CDLGDslD0R9uq40ROq4V2oAN0eAvRqCLZ8vWINliTTRLrVG1TlThIeuCrCJe +zx/UDYERknBB9lEDZCt+1ICkpTjDTKyxPTJCdz4yvw2FkuaIhQZlraowMldZ +F0oJnD0JahiKp5XXWHyUt4IJbDlaggnDEYpNjH1h+tg2JHQCnmczynwwxEP/ +INL+M+u3FBwW501x6mqegDa1Q2wpVxZoxWKTTeSzQnMv/Jc1PfAVm5nL+45U +PY/K0UDIvARWbco3UYBy59w1clCrX6PtLvmGhN+u5rVH0k1pkOtmqWsdREur +oicgsuBhE3t0Vx8pvbbiMjcEAx3QoVaGM3NsDRuXNs5SLGr28hBay6+Khebk +pqI8AWTjO+dlEQCZPFsqJP/qC8QiyEl7tpm1dOZbzDImqNysRNK41wsfAI0+ +BudToDphlvybLEySF/3QOsBACPsK4Y5Z9f31s3XFnXW0wFDY10eSsllM2UIq +kk2jG2WEW8QfjY8lQ6+gb4qW3RbOGfC6purnFAoHWqSvZXqFzGRLVcvlpjyb +8b205rIHGGa0aOxdGTWRA0+0yVmNrol0EgvqNqJCGDpJ61C3sr59gIjubTgC +dkq1NGUsB9nuyVDIyMZU9CHSkTVHhoN2juiAFbijZFc5oRKk0YCWrVwaoSb9 +CtpcAgIpZqRT9HaP9yrzRfd1wubg6TxDd1ifh9P7Pztd+qq+NIgkhZHt2dG2 +ssmaC0ULSmS5eJadFsuuGlWX+ipYXljmKw7q+obCwIvKLaMYwJQvwNXW7xTB +k1II7KR3bcICJt1ZQqtWUwm9Am0RawaMVxKhzIMNFEqqvzPRn6Djwefn9WqU +igdAhgr9PT5V0vy8ksC75ibT9s5JvZokZO7pUqCtpALlbExWsxBlMq/Cgobp +uiNN3lcpPk6QOb5XrbuPWZHNnWmS0MSWV13m5eTZzpk7y9ZLBhd5z6BpbRck +wt4r3Yg/WxeuuEpYEYIxasMGjmKkV3GbqxwFW7KWf995nRMK+XZFBCgC+RE6 +ibMLEQJuyqogU4dTvlOMROwxoP2/tIfICL1Fn47Y2CNlIxGelkeMJtlQ3gE3 +WI28aB2PNbOlazfcEprQYLeJT2EP9hOvD9h0o/IkHdF3LtiV6mfh1eLVG4rV +gE4kMldoSwikUhNDqcdtod8TRmvVGCF0F5udlNZ3RHxFNlJmcRw9/WAEiOjd +KLCmvu4KmJA6iq32QUtRWzFbaJsC/SzpvYVkXtiWzOR86yU0ZH7vCz2Hph21 +b3ieBH9qxwOZXFPCKcs1O/su7JyjgOmxw7izfhk4+1n5j8phYBGCq1SpRpOk +MtZZZ+KpraOorsnpT70+C2JKK1UoTZA1OPLtwqzmrH9DgQl7l0Q/ZRBDEtsJ +OeSlQdMGFE13eiSHPDbWJxA7A0lcRrM2fuTMGhzvwEllgJRYZ4zb1LHptAyv +DaVdoTA58N4Y6Y4+geysfQkLNa1Rfpa9rKWTBK+sOAGazvJzvy3MbC02Iz+R +ZFnqj7ehWZ5vm+BX6ln2ng4BM3CVJp4GpJTIXbr+RRcId1KvKOVVcTZym3J2 +iBZmK7nqDhZNRoTCvSVFovB8Y/HPYIJJn4g2K5pyCGNhh5KhWVqwyTw+Jecc +BW0b+nb2T6RZ/qExJ5dL6Dlip5rLZnDbd+vP7mJP88nSnzkeieRn+Hvo7Pzd +iGKsLC4gd67GY/WqHl4NGXbRjKzEaI+LWndhTQWYAlInttu3IF1j2Ys1RSYt +nqLqOD8Vwi/JKTnGS3WaEFPxsdUOG6Nl/ZahBZCkz57de1c2GFuMu0xRVSLQ +gSs9oV405kbPdRUrThLKQkfyKBhAXmL/S46zb7ScTcpBHkR7SRL7QdGgiUGj +Mjo1oQIsAUFnH30FamzgO4E04SweTYHwp1wjhSX6yfQn+74+tJs7s+RG4mFm +bvaikh80qiPNPzWbNwiA5OjUaUGDZBx5GIclZqzMl4nIncsUHD653Py5iQBs +aY2nrTJdTMu0xhXIBJgYjn2vu/rQoDiEgVr4DyuGkirArm7OlCvR6pi4vCEH +bxidLP4T2gztDdiBxHoKbhSLIG3bzOcDHWhiNxjAEs1ETgk02mJrZhdufqAl +Cy5uLzcKXIR9l1qZp9b/qgtUby35rEiMKd11ds3eujE6afNiWO6iSZGNTB0r +DvuNWTKhxzEDyDTKp6hqLQ1GGxwmMJJuvK4nTuxoTFsx1iRN6g7Uz3wpxTz0 +XdbF3Iyx2nH3Q1I776Vrzme04jn2VhDhjIQLQpLESrwgn1gaXmdPKYo8CdSz +WNc8IjZEUewiq03PLJo4OF6gsndTs3QvtcwqEftVxQQWyP8puBvCmhWjAYtQ +gVNJK56w74vCiofCn3iAmMd1qUkcfQY6vSGeCmMo6aVy2eH5PhCH+nopnwvh +7OwUBr2Fi0a+Ym1nztzBtshk9MpidJL/do6/nWWjUVjnKEovOTVNj1xs8+x/ +DEjZRXE4hhsMLV6x/RFmEgHrapcLmhxZAJbuNwXp2H7YAkrfFYRJABkAzB7V +9MX8Kwun4CqUmJq05lDYFkL4aI0u1OaW3tBj4mL8aIaqXk3SoF40/0joTEIT +Xehf2AvOzZJgJZ0w0a88vG4dytlDy3AcjF4+JHS5cZ4pMkVCXMoPXYvtEGsa +VGitIR73LBg2fi80peEnGjIb9sdzNIXTy0iyGoVRCzMELcZRzkzgb6GJu6Ql +n9Ilce8Etlz3sProSVoyaHawFGAZhnqCn195prVKMRQxBmRslHKLCw5ajdT9 +YGG/rcZo4gGK3i2pepixY3Vm7aJTH99+M+vFuGKCNrstqpjiY10u7MWSC7Qm +ut0E0tNyAlafunXLHoy6ELWJtZw04kNgUjRbIPxUorjpO0ca6cZo0DLp6aoX +EgQxU232LS4B3nnb1ajVwmdB9M40yw0akyuRLXecQronHoYAS7hD5ba4UKkg +zrNXY/2ktP8bUxCw+SF2u3wq4hzPePI4zssFtXeKeGFoPXsWIj8TIyHrIXSw +TCyNAOXZddWi2hdcTxl9HGZVaQEd0TSj65ZBR9ImAj01jHOeBRN0ZClk0yDC +e+OlWiXPtw6Ad7AQ1C0wfSNtHa0HJCPiJ8k8+NeSN5c2WMwIN5p3yJSIVlSk +BjcYCpy017P0j6W+XP8QL9DHrhzhuvS3C02dbhdtr7Q0AgvfsNa8waGmUn+f +prFcBkvXLD/elf7ouMfxFJurBcEEWiMYFzaJcVuJKo8Zz9TV7hGkWobJs5H4 +xTJjMsYf28kwKNIkvKg8GyvYBKlIjEontuyvypkgdV3Q7di1azK7ZjG+jHpW +J6JZymZdjFwMI742zL74y35LAvEtD9akfMqJZYeJjWWYeQJA7a0ak0xquEeC +QxPpCA4sj+EbL9WeE+yf8eI6VDIDWenkGqYkZrtAPymkWeQUpNjGYwdjWJ5/ +QCMdHLSDnE1X46mgO88vMDQig5+HOY+RTqVoyx9aK4J8/PhP+cfyjuELIOd3 +kI+y1HMXIckCUeZmT01ZAwFyaeFFJs/tnEW007Ms2b/rktZXwbZIvzGYMyDr ++FWC8Sy062GlLHlQCbI+rIuk6qcITypzLcpLU2ozUamKTsHCmi3bK6FVIqVO +O6PL725rBoCj5TOPb6O1fLCJbaRbWoUINFfWKIDNqymmtqHsBWa6/C9lqdgC +qX8QmWmBTAj4bq0cuu5T5D+nIzEbkx29m9LyClfmFK/IlIRByaVQu0vX47lc +jwrLuF+6rpId7pFfkZ5sy+EK3rt63PrXMXdPL+aMY97wta9LaRtddZtykub4 +A4ffCzajk9vC3iTOMSCxVqhk5gSbq0zgMj7ecZNXKyMjN0kX+nb32DcUe8H3 +Vag7ybwh5cpQXc5nYM2GvqPLklubAqc7zBiK19WgyjBmc7re1SbpS00rhdZj +MfE6G04kM/FzUtAthGOez/Xv21gCJzhkRLE7z6U8187nydULJEq/av/JH7/6 +W7ggv5h/PX8MZ0sEod++I/Bf0gVD66PcXdXPLIRYaWstyAiaJLgWg0S7pVuJ +7K89rzy4fy7GYJgUoarQogsHpQUCMJYBPpVE3abacmA+Bprm2beKARGli6Zy +CmXS6Lv7tjg7wmRDK0ECWbYxAy35c1ekyNYj3pjQdDlI62rf6pDURfv+8gVt +iOC8+QzwZi4WpIfo5WBoYukTjpC69QX0H3f8MuW9WfYzN8Z6M7dOu75Ti05T ++VUM08lzQ+RHS+tZkZEztmtptFiGpgz5/iI/iat7QgLBCS0NJvt9Zq6j4kb5 +lv2GVAizPr64yF/TksxGhhehS/Bc4lnRYMs/AfTPYck18oB+G/jLDH7ir/lf +huELJcpSxzD/6uLJVxgIh2/HmxGd6UqGQ6CHTyJRipbrxzThlictSZNAmWxh +XJV59kEVcBEPVQAIWXlwPOGzPowOia6pGSTBTcOEAxDB91/6vpkPN447Az6V +M2riK1VQbDSvVvEAuKX8SKFCap69VMCi9JWpQgA2YN28Asv+Gqf13scFWImE +j86Tj5RlrvpNe1LEQIUT9FCxDjkTIVOMAQdmYEKzLskA4OAvyZEYdpTYVYty +E5owWLZDZCjqHGlBPEGtD+dMGYsCj9iISzXnTqHFgxvkFAr2mBYWqz4nqWLf +sAscuSlahfckjaO1a5Anu0OcTWF+k5juSDmW90YkmQsu/Jmj9uPaEQ7XWTlL +avt8QAbyyCSFMA7B2aAdzjd1/dGqm9RiGKYTffoRydpgI/T7r8XHnM188Mxh +taohdie+Mn7PaO6nBnK/ufqdTE3OMWv0G7qCxUVlh1arU5ZaOXqpFYzsIojT +WHUhu+jGOs9Pv7n6YHQ08p3+fLRXp3QeSArN5PVW0sT3LENMxKwSzY3fgoL3 +DDyhYSejYj2J+yfapim1wiHsNTwqqaQTtgGHbp5pulny1Em5SoBio0mCLTue +k7TN4P+XjUXRSv6qX6CokQCFHuzA87Wg3yoFQGp1tdBBLcDNee8SqCyECgde +fs29YBg+LkVV5I/rwaDT/z8dr8bf3Xr8W7Be/46J/gFPOn1M6uw8OPt/58n8 +Hcf47H+OydfLN99/m//4FvW5f3ma//t2S1MPrW9mk9oF9TjgTrCYMrejcQgE +SQ8OwxtShK02EuffuW9BgetLIYeNgrKZamo5yA1baR88aXZ8/aE7Daa7Ip1I +SrhS3BEWxGZZl9rpjgHI14cbTVSY31MBM8mqs2aGXf7RCxh7ofhsLDJm5jH8 +0ab6VPnuXCHZUSl6UB0eWoQTn104sa7I+OWuDunY1risUpNvqimHZwTHtYdY +Cef0HR24UnexGxywxzLdt1anWggsnVPktw0iw2xqkdDwgXj9F9JCTKhsLONV +i3C4HP0zLX11uubp2efGHGSxWEmfKIVHoLlqT4Kve1tq6voTCP0+9e4SNRSk +OHmm91E0KfWikJuJpTvf13sOqsbtC+iPw25TfSzRRZmLsbkN97Ls6fpjet4z +RwGquao6yFzMdaaY7v2h4TKGNpS1NpFeY/RGk+qsFj0Z+8RC/hbyrRxCgcJM +kT9H7t3A6qetkx4YaOEp3TTFfs03SOuysKsDMKV0JCVyKhGWGIMLPwQGO7RA +ZQQcKN6lTXvVBUoEiwjSezjgEC/xsZG6c2JgO0cz4KN1+UD+HhpAG+uXMtIE +ldPDRtHFR7TR2gxJVJlPy91hbBsT2MqjtPx1fGzf11acHlzYIrTIg7N/yjom +BEyAFFT1jq6A+Jg/kYI/iXv3zCa1laC2R0VU0N983kLXp2MSF1H0h70JztAI +DYlytWIYiKJ6VjVoOaiwYjBZuHAtAS1wgU8JeSstNsIsZzrj0SH0q+zohQEn +5V46+QSXwjiyGuIDqFHu3O3QWjIF0hXHnwN337Dkit7oDWumyTjgYg98O58H +3TlLEhqd9K3bltEycK0854Mt6pH/jmwQmt6IamQGmz5CcCgFbyQJrybWlEDV +KP9FVOmW0ULTalez0aIBrphs1SO2mfK5qeigVSiiN8YlxCi4mFQ8cf6Vr/aL +FYI+gjgz4EKXVHTEWDg597MsVEKkEYtOehDOtSWBdMVG3AXgTe0JEhhj2wxp +L/SdNmLabYHvOObbJEKqLZ3D30IKM3YYR62U4goCoyJjQu1K0XL8XSC7DEDG +VYxNuCHs9DxqGZ1ZRlWkkJVwij6lK7Wv1LWegVkGzDyPD02pIee0D1zQz+15 +i+UoKG7uO4G5q4CNtZSxozdgsvCs21gEXoxpwDa0ErNINMoQwUmxEf4OjVIe +dpgCKDM5td5n5eUMeBU6tktgc1O3Iai/ODSIWI3aIvQ+WY1o0zie5bY7bBl6 +cNgzvjGxOyVAD+ikX8BTLXHgyByQfmdCqSiI1QeNO5sat8MAx8agZo0ZFow3 +C5E2uLDy7MDHx6W/hR9vlqzUZ+EmSUT+nRYSucVCaWSxda3xNZd9HBC7AMA/ +xZLgyaZBOmrticUP4/icskB75uehScpip22qdtoQ7roqBjVOnrLCLEaRhU/F +zQEWfSrcCBfJ9aYztLIoQABmWo7osRyudaGLgLG3S7JsXI6SNd2DfEbZeqrA +XaFk2qK/RpivJQr2QMs7RvNb9HC3+m2W+h1cI7VG7ut3alWMMR48oEgSK1rq +ZeRtkvA3dqRkr5lgazTpH5wg1mDfvP7w57l0UeYVtt6rdJFpT+jU/hvSj70v +luzVT44aDlD507q6rqwTQkvz5LQip6FWZlHGxwajMcVPpwx1ySEYPqPwLSc1 +CtBjaaabEeav9PdkB7ThYPXIs3bRLel1eNd+4IUlMcF63cdmDZ94tT60/eMS +4gy6W0KQVofm2Ulue2SQjJVhRtCh0XGvYI2McBCrGnkKLj9rpGS12ynT5fDB +ciJBq5Mk6z0S6lpxEA6H1GNmm4pP9Gi1Wo1TcrsuDePlcutwH29OHa/v9qx9 +2qoVwjvxpAVEnZPGkpCkdegKvXkMP9dfyPyDxivomdFDDHXXDDwrpRAt2fxn +n4kFiHacZ2p+zxbcePdANiHk2R6SFaAQ+rj5QzhsUZCsvBusojM0zoyMNS62 +qJWy/i+LMN4R8JjcAwlDcTgVrr40PiOzhfWtldMSqn5E9ogLVDjuK/jDAYwJ +VChGFwuDQrvr1LD2VDIZl7NOw9SEeVsZYpjckUbNG25cuhaGYqmpdhxLElZQ +h8KSrD5GDCgnNmZY+q0lk/BZYVczhkNhRcJ8i1n4JzNu2dGOhoUxfAE/kB3S +OyOxik189Ebkd/yivJ69A3ekJu1YiIPksbLuTVClCbY0GLxoycFBnAdesJHg +anZcIvihtRQmKWTorTPa3qvRxlNxfz+3v59lju5ZyV3aZFNiEIGTLnxcuXAs +QyYAgc8JQUUxBXfx3ipDsud40Oqh8ZQg7OaRTwyYp43SI+/eH/6AS0UC7X/4 +Azb7D3+4LuKfnmbZOf3pG/sT/UWrOWLByzW4U3zbZC1kJB2JNoDtQ2tUcn5q +P3X4QOQJD/PPYTZxnFakjS5Vmi2VcSPDhGM6tvHoDeIOiSehM+JfR/GNakRW +JgKNPCJ32SKmBeb5m5h9xyMiwYd3OpwLccVIswF3jRG59qwTT/Ba5JBNFNhm +Qy4PiedE9KVisDShUnS+J5RUpvtXmL4fLVJrNZIuNIh5aFyM1mScR93RJYPo +GTo9aVmLpMxQpBBGG6sVJG8Uxxt65ZTdTN4ADiqwo+J5xsZRNeNgCEUCccNe +ei+Cmejx4SgC+mZL7wkIAZjTYrOdRRzEyoUzLLPjqoPi+DNdsdHV5E6iwYwq +w/K4ghOUDbqdjE/GLtG7w1akVWv+fcIpoLZ5mItWTxXcwKFigj1ttjjo4+B/ +vi2Q2JNnYGxQYw23YfXfA1cxG95wc/mxtDrnS7r5dq0cooYEr+baHpoYG2iS +vp3Et4ReD/Zya//j/cojZY5Fq3nZsNpjKzpkqQdRlcTakf8aab77Cw6LJNR/ +uwPDz/v1h4af8qsPzlQn4d/oOGGmv/JIafZk/FhNjf+3PWwQgM8/cDbyhxw6 +TRf+6oM3vSC/4jhqFvTeI/mQvtTG3BirHHhV6L3MeYR6o7rZg1g35LnIjn7I +o0/+cW7PPAGiayMh89uGzh9nLNm+E1fnZM8wFvqf+Iu5PPqcruOP1Z6rdp5C +Vzy+uDiPQ431crxUi1L+rL8EnoB/zszTM+t5yyIg3jwbDjdsyX/EPf6PmY4l +HXbgwioSHbMXO+Ei/1f657/mj/m3u/l8ru9ed92+ffroEf0tTGBeNzeP+L8e +/YeBTBLZPB8U6gZ0OPSZDSuIzVObdHFTPksp+nvbsv34BLuCE/Lj26f5c8n7 +Bsy+IpDQsrpEy3da1Xn+ouDQwm1pqCL0anSGXdAc6N/hR4/VQZbTbYyss+3e +s2S0z1tl/jF673FdcCvAX24kovGK/sarxrpfrUQO2k7h1YUCOK6mvWfD5QY0 +atgVycsC2YMQXsL2vGBIdGg5Eer9enGd/wXXYILmGra9fZV1/Ui51wCdO15d +1kr+65pzjOhpWlnF5dBMupq49eQPoUZb6uWuR+lMfEnjTCtsAFIV15N/MVN0 +RV4BcV70yUpwdmA/TNgaQvRg9dVgx5ZBxwH7ItvRsc0DP5JeF658XkpCGSQs +6xD2t6sPkr27rUNx69Due8EdBPpR9DRmiQDi0vNgnRx5yYlot5c1c7AobVb4 +UGI0FQPbItAjPEySbHo4Jtr/IXuqzvYoPPw0ZOSTfVLJUsKvM6t6HTOF36xn +vlN8oitTq/i3Hsy9AKMP6zvDtj7j5ooVimcBpODVbivhqNS25EL2hoeFNTbr +04prm/yrC85w3rfuV2vLGvHk5HHdnYnkhPJx3IMpEn/E/wgVNjC+LTrMTVTm ++ff1rbYXaofoUteWMkQ2UnH+Tcd+7x5dtiFriyYmbaRHM55Qn8ZT0OXYGJ5x +KUpbz1ARhQOIB4vtyc90ISA8xsJA9EOj7kR4R+AWGsXvYM7SrcL2QwSdtYov +s4QDMEV1QIi1Ac2jhAv4+Uw6kaOFhfyczLgKWL+YcFixEUrmCUtpA8J0Zuuu +uNOMQ8WhfAqx1LaeRcH963TxxES9ROztpYWBAhBXD6zXU6KMLSXG5T6wfoZ1 +kOi0daV+hcZf38qHHNCTyJ9niAqxP/mjRv/yfyODFIQZD2UpCfNqOPjPuuv8 +CHRRoS5CxjauncS7jv6ITum9pJrcnAZTCoMfMgOslT7RjzS/46DDee5qMLeV +5LE8JFiMeofBi8yTgnQGicCRM0vT5quYX2UXpmSmFVej7+ZMvAYJKotKFzsZ +NEBdUwaKzAOLRM9v7l2jry7+aWKVKrkylRqJB/zGU+5YA88AAg3LxDkpNuVk +j/jhAcIo0y4Hlgo7J0sOFTz4aRMWlzxebw7BsOL+lyybtTe4d4smPXDTuTwk +Dhj1JsIDeN5ayMdNfJZmvxJbypdJ/LK4Vz+Fy8pYZ6FLcYJVoFmc+JUQO0gS +vpHKonTd7NDNU4soQhSj4Cj9TaxuIykREnn5OlqNKUbaZwYV2TNYtJAcjH+n +5X02la2OsNlYwBYznlwcnVSFjJFrPDAT/iFYtHKlyWFjzfzMvztRJ1sBEBu9 +YMz9Tealf8enbctd+LJ766wAPx4WSE6KKzOmtL0KKeSFd6GUmcvRs+xNt/a5 +ofGHibTim219aCT9HEqxLboe7DhaAB1qzP+qlEmoLWIXWDxG21AzijH2aRxp +0ygsNgyUg+MSLCdLT22VJfG6X89/uQs1CBGioD+vtAJBegzhEZLj07hsRMAI +Gc5+v7nTFF1wGUI/r1C3oDA6bQFzXPkki1NzORndRuXg9auHE9E/UOYDy63A +ozZW6MZ8P4CfF5/urD+hoD50wgbjMPqik8FKnETLTNqblcIfIlro+9AtewYL +6BmAGeEhQAiTwHL7wUpMTiR72U9hI1TGEkjdBrWbOh9+xSwQF6rRq6QPan/F +eAWwOdKuXpqLcSBF7O52Ue/LSFgxFXigw628WXKzvReGcLtnH+rsjuzT91qK +ZI2wEpaZoHpiJdH4+MCp1wdnwXSW4Ar7wIBqcRI1H7ChrhXCxQuVDdDI0/Tt +PDSAHxrNb4ZGwr5rq5mxojiC88WZrj4qfmjazMatmhiEmIrLuEzEqUZElE2J +e5VkGnM5GqWprPKfzSfyWWlH61Yz/oDo4Ta0TzilLlzhKXs6iHp4SZwRwXPC +Y5wF+uDnPL64+CfrBIbmXty2EF64ZnxA1cqabzfkckd3BsXCMBMLX7NuGd2q +3Rcnwob3Q9Pm+0gonR7aJvGnDHj3AS+jJwihE3w2U9+u93fW0jzDTPRSf2Yn +CH+idkLo+hUFwDGT+MqxCkoQYu3uvCEU9nuWx61O63ZCxFUAC2U8Jn5VZlYC +k/AdglElQEv6Gbb+V+OuAKgvSLOiBXWLD9SGWIzNS4lCZoGEeSC1s/FRR6BJ +rzAkPZvht9WQBiyDtuuPYETgjwyB9/5zh9FjjPhcM1wHrHr2V62c2Nm/cPV6 +t8bEsH7xcn7W2HpLevRCuyRfX4MtItAnOvQTANKrn4xKQGCF2vVUAjrxGs6f +c+bIxWn4SWDatt4Y/AjcxSeX4uqcPCBe5hnLwP2T0FUpZ2MDRBAOrQR0pAFB +r0pLKtqnRKNaDXfA8ux9ABfu7URl0EDJDjDEpyPewz6IIYq9EPPBaJG3Rwoo +X9euSzLbnLjHJKEyDmoq3H1pDvmxyxaQ+WE6Js3q85dAoXv/8wTPfd8D8S33 +RA178zOWQS/qW/P95tAmv+o9LEzfPdCacq4G3wjO0GjMxT32dl1vSv/M8Acu +QTm0wyf3hqUBLPcEKRdpO7Ko+4fcT7h3rwwGsmeI9wOeExbODUURMcdeoSba +kcGO8qBMa6LjxJPhhcemFXXgL31rqg3P8283bXnsB6FbktpMaWnNsbEaJeCm +jAE1bam2O8pVExGUYkqZHyFuSw8DCVsmK8bVPVrNcZUSyhpXR1zeLCW4mlzn +4yw3Utedn1pnKK1XFLFSTPjZvV7VgJoSax7ikFEeLQXBuzCyCXQRvWXkVGmI +4LpRz+baSB/cJTGhemOSF8uRiooRa6dNeZj50kkNB4G994lIWHQ+EXsye5Vk +zH114MwN6eQnaZUzB6PxrLCSD4+OXL4ah1UHUZUzOc6Ti6pZAdMoVXcR7tqV +EsiwgGpu+DY0nU2ynNfktq6Meto5tRrKs0uNZXtwoxgC6FnSRnvNFBwg5Aue +gLbMWB+24lgoc+HNgXapDb0vpYZHohyN1bgPoei/Q0aH5s+ngi4j2z9r7gzO +Dcy0ajT0k6+UmNOKhxDQCXTb6Hw1To/9VjuCvleuuWtUNGp8mwNkfExApQwc +8w72dp/y2T+ESa2AtKjqJTOdC4IC/kiCy7YUSPTkrBXVNe9gCWAbwq6VAAvE +DxPvCv6r3NSelttRioybHAZ1HhMjeUf5U8fYQPGhZs5r3nNG9y54Z8l7haxJ +rsTkNAhnGqvXYP7dljrRicDJ92+ukhYH9r2sf78wnrPdV+pcFtf0pyIwctaD +kYxwHINM5n6F2RmJGHkU3dqMp9t1iMDO82pORq9iACJxitwYTdV+1LCgSZBV +rUvpF47todkZCpeWUZ6BdMu44gxE9lxi6Zd0uDkiUdrRyhJDd5neAqA8l+rH +0NK+atFLwa7VsQAHzugVuQM513fEE2q9i2zysTe7FJm7kQlOuy+JIzqoVYvf +GO3atJcDn4UM71GBs2L92UAgJTArRB284kavlU0Y1PccCRL5MUn7bJnPxuR9 +pB+gUKAYujKR+ixcHbEEZ35ETPork0nh5WeLgjH1h/xtjwO9resdQqAQmG+K +DQ/WC4zUJnLBaAHicD7PTNdg6YquHlPZRzF6iHOBYciYCEfyY4hyhjr2a3Bh +Vwww16jefUBA/xJpdjGU3NA2Kmk7rZYfc5Ep7ztq9TThkLT6sG3WlFJE8Wpt ++tk4GeJiXS4+GjU70yAaxmmg6x73dN3JfWt7EpKFCRDXYpt0FG8leWgsQ8zC ++YDiuDwWx2koADk8Kelk4Hn0DCY0Iogf0MALSewhEEDrmTqj4LdeknqYOXKY +jV9tI/fa/9ve1TS3kRzZO35FB+dC2CBH9o4Pq13tBE2FwowdfYRErWO9sSE1 +gCbZSxCNQAPk8DK/fSvfy8yq6g+QY+vgwxwcYwpAdXVVVlZ+vneZHnB1CcMg +xGgVryI8rV6ivEPzAMVNFcwSMaPZY4OWLWhl0UIjdyoAxvxL3Xlo/LTc9R6h +xqBYEk0DQAYYy/+t+qunKmDPxuMQb6NUqOPXiwNmhHWe6hWwbjLCekNui8bq +wIVlT1enEP4VkjPSfSiGf9GWVwreSGQ5cibpwqm9xlnzlmGaC/MeMCy1mCRv +wmWHbgq/s6kXt23OgkEzfsTInzxh3jvDWG2MlglA0URJRjrd8LQ4wK+8bgY5 +U5Ie9HUlZDt1eHZd6Z7BBJH36rPzKi+vh27Uf6CvsHOaB+duiOyLIoBlvTTv +TZaECrxNgJlG/WuC49YpgEAfYcODY5edEJXxVDBmVC62YmociJFJq2v1QIFR +RtOkBxpbyadrfEwy7vpwhgVjaO7vD/OBwqYf6xscMDsaAxFDYi09PVb/nA1F +C9PRpBYqBuH6CjX/fbufp8R1nEz/R72GqXknrtNjwls0JsY7GzafqwGi1nHY +/k97SyeWSCdymK1n8urZlwcm2badqF78R6hA7bibZXHDbolUVy5QriLsG8// +WYxFprNiIrRWRH8V6dETVlyV28oVPH39mPCbGGBgGtBTUKOOXu9ykjIOQXjN +/hl5qIyy1LlvI9PnWDjgIg+P8zpQrQhz1zIFjYIxKTa+80tOhn3Fy+iXWQV0 +6buYrK0h1SlGPW22WbiF14tkjfqFAUwe0JoPrsuAjiIOTLx6FEylyVW+PXhZ +hb8BNrJSCkzhiDMe16xSpu74JgS+R9+X5qXT8SPEbbXS9q0x1rmJM4nH3ijJ +wFUHnMVPBCxsM0DAPC+kLJDZJ8mp9jrHHNitox/q1vDZ7G7LT7p4qiugo0os +laA/4TV3qHDbNdmOg56pp5c5TY5BesGENrdsR8wo7Z4R20SQK1Z7UrvGahy3 +ZrPoN1GKJo7nNvK2JkXZRJGT77BWAdn4EA+9eg/BshMzFJKY0MMVxxF9iuaE +U/aY2E0POIDQTrnC5G5LvGDeNisHZrLMY66PJ534QN+V61yT70HeQDTzAU3U +MQYYNRw4yP8GO3ffapVotsrxLIDdNJ5jrS6JkckBkDHnPSYUGuwQK5AG0knC +cKPi+A9sSyw1BczhQcI2i9ggMNBBfxoLbTwBrVMruq+SF/BEjHyXpl7kawZW +SJMSAtL3MOpQJ0I5gMfv/IJeqNLYsAZO0ckw/MQIXkwxXFg3ebmtOo4/9dp6 +INXQrdwgs2RmHM/MeehC2ohf4bW5Z0UChiOluggdy09B8WykGu4EBT8KXmPy +Rj6pzLAYmFGkQOp4JSQDMmV1HCtvXpz+aepEvZO+NQjmYJz2LqfwcVICKtVh +07C30f9kICWyYHK20eZFwLa20j2creBQSaWvMQ0+VNuU6Ml1S8oYbdeJ9exO +gqZsIxhuGh8J3zSGb47fttZhx79j2HcwGP25dReJELkpPnz1M0moBE2vuq9J +v1JV9JqMoQrfHiDcA3wrUA8jjqXg9C6Ejhgd+Zttvaj6gGyia8JOInvRhVq8 +WlU/qwbo/9DDXUqQBq1kZp217AN6bzqAA9c2PaDAT395//mn18YQ3id0G4Cp +Awj9TNEe5WAGtdbspaSf5tx9Uy+HhuqPNHeLhl6UiJ9BJuNEDeWVht/LMlZU +DoTBdI28qsx7HQPhe0ZVc0Q9V9NQ2zHWxd1jcV9XD6z8/RTLeiToUxz9CkHx +XuVnyMaR5Zojx53RG4z8gndu8neLZgcLByKqFvbzGs1iGQ5JihSm6Zb6DtEg +UCNKkT+O5zxIwo0sovwhtdTNspGYRaV0ERdsxpFIOWHjpYQp1TeRTNUyPWTq +1g5IWwxr8SsVhO5NTQa9Oomg627UJBFaNz8W77dSI3YBjDS/+tFtQhSIkb7Q +fiXff374oXifFnLLFSV0iPP/E5cIyxzrxVVrfFecKw6u5VDaHw9RPRjZGrY4 +7QoBM+AxsA/u0YDmpf7TmZexy5mRiBruclBnoLs0S7bpqGEpfpSuGFBKPIeE +4pJDY9/yeHoKZyu/15xFnD4OqrTeOGXQB63uL17i9i8uRSTcAJBB5LTFynyv +6AewImEtnzNpcm45yyrpIBlGx1IV2nR1b/4OkQvWT/VHPOfZuv4wgtoU8eXo +elsvjzxbbyxH7Hd/emA7U37HA2idOjkc5ut1tbSUWk3GMiXKWzRl8B4Leboe +TD3WzIC/e/2RCOEQsA/hrxRNMoIturrC9ehAASfN9kTkgmRy05RNPPIfg/CO +rAiU2pva6+aAbJImiQBwI6SCXH81Bq4IudYEG4e1MO61ZUA1N/VVmBwiArIE +8tI49KcHMEry7YPH2jLPJ49IQO1dBwvDpODP82Ww494jYvYvoN6qk3CJIKEj +M4EcGj0l6BSTDdHGt5k7Xcl7tXa4jlC+IvavhXhXj0echbjMApxjWU0/OzCh +VODFumXlpVEJzmwxt4T9SdEl2ApFu1ALZ4J8WM9LmDByCUZ30VaVkybaHhbH +9DXUgls0QSm2m4Y/iCs7HeDbybLDye77/fIcPZB0lS2N4Edko90F+88ULqxQ +Jf96kOk855i/RkuERlUMR9SwKK+aYBEBDnfdZx/5URF33so7nZMoXYqlzj5c +SMIWNWnOVfiWPio+NYAf8eyOYMMRgusOHK+IER3F51BhyPc/vjn/wx9/+CMk +IohTOCMbFYUOfZJw5L3+fKnrKz9FFVi1jrAlD2VN0l51N6UmozW7Dga3WWXw +DJKRGk3QoMQNXMz3pFgoyutrMJOBRuzghIbv7P6l/VdFiREyQK7QEhFyMWDg +Hfs13b+beoldUbiGgmsbrNBfwYDdLIlPlVUT4F9pz+0qUz5Sba5LAKMvzeUJ +xsX6UTKZpyK0YPR14idACzDgwZHelo9z2KKleatAHwsKoNr2bql34DcPi5pg +1reEOxCuAIcFIYwS8lKVagXO1tNggKmX7lPBtXcMhzhsbjnGSKf19GlV/19g +Px3l5GvtkdLliMCheVBeSZuRDlcQwgoKRwyPRstkr/xwoPDGdZjJa52ukOpe +WLb5PEe4zRi/BpcVunuZ1ZWiTgZ7UYDZcbZUBr8bsoUMl6pNDqBkcIeDxt7A +nZP7Gh5TvxNWKU9I7gy/Wj9wl0k57uzltXWQrk6j91XQUPJ7tAoxUru0iCnl +tGGPVIdDQmGtVbfvtACkNLq/EYEyc5dX2Rgif9iA26radNetu17e9aEzlQyd +hE436WrGUPhACM+O+iAnJMZkg7buBl+tU9aZ5nnVM8NCXN/stJ3a7YNYijUU +MSKvVzT5OsnhCI3FatsNrvWMaQaBOkpXFkItQUw2wK4AoddKG+bCKkW4Ia1Q +t86Dov5dceGLmreSWjAeX3xjyW5n3+n0nc6Gj7UivZAVAxFr+JyseJDoPOEK +NGTM96xsdp8tAt098WJ7IbTpV9ZMa3U2avpIMUa8GNVU0tLEbSk5Fn2GXN1X +5XZndEGDuWBc/EKDe2yRNnR1SqXvuppGgEjYaJuwOvXCDLWqs4cuAixmZe2s +ipJOiaatc8AnLAk3AuHfGwmkCckwGOSYbhJFQGHclaZojNdhGvXfaxCHi/k5 +6cs7zf+eFpaQ81BSx0DodtXalFY7KMEuvRp+GVGxI9udRkpgN8uE5D3CqsnU +K5YPGXNmMEKBISSXWluBOlMGcr4dwqfLfhLGSGZ2feNwm5FPO0yU5Ts1LKR9 +3d4ko0ByuJrtLslUqhGsKz6SFbgpFfXR6BUl58IC3WrtHQmsqI0B2kGYUKpp +j3wllwd35x41MHwFK7k65us7TcqqmtoehF8vqiCAflTfDpzQxJ4E+Ka5h7Iy +jxqE9qOzAaFOB4I2bfNXQqLgUgNYV/ZNGAj+9cWLH/7X9MUaak7iL4t6u9jf +KRXEzM1XtxNeq4CgrL3a7dUwilxTMh6kJ1fu8l6gHsJTbmq9fB8Myle0FXe+ +bqMYUGqkjdi/Fz5+3cF0vVoJc6SZIr1jR+SXx03VxodI7sXq6psmI3FlVFpi +hRJeb2vfKb/Mq7XsaauRZFQS4N+RibP9RFSYYr9pxHRm3kLEhxEDpY0GjL+Z +Ygs1M0oLLA4cYb6hUz8RIjKcMki/3nIr4upy6x0vJazbySccqXCoy0USsNRT +WUnGFQA1TVGFFWkeUdmuB4yBUanaeBRMovmqXNyezJufs/Cp2jZKdLMQf5BZ +RmDGy4qCQCoVo10lhs9u+xjV6Mde8Oo8DV4NHx3DhMh04yxXdql+PR1Q0YJU +bIQuY2a6MWsk6fdwxVmNKswPpXUiCUU4W7gR2s7O7dcMTaiJP3Dtom8Hl66f +kZ318rgRpO7zDIJMHqCrIfvHyz8fSjAb600fFsYWwlUzNbfCB+R3UpZClZsd +dbKoBfSwWrYBEVdEvu1QUAymbBwRRWnb8nJCuzEVUDWZZfTkDL9z5CrQIN4x +9sxJ1tH8I6PFJrxp8iYDADOHU8Z8SuKKSQFCjlfTse8TV0tqSDWVzww2s58G +RWVB15SU2Wp8b6SXSr9vgSpYRgdmyXsLOzvkcwSJt6b1i87H4EjRg3TYm/NI +OgR0v2siuXhYi0WacOvUIrWtbJdKQ07/lrx69RgkXVCRGUpPue8Q/5Nb2UQk +Mn4brZJV1cDXuGlWy4QIEZdcZAInEqkM8BMTvOWycc9KS0K0NkPar672NIgX +KySamnX+egwNanXEOPGepR/KZRVVYoYcHGT5XZDlv4ksS4JcTXIyfkvYYL9x +vF43zpNMutuuQzrQ61f8uCStqokMuU2aVAb3PatjKzcok5ocDzGZC8qWDILj +mBDpfZNY1xdrhSuRoCLTZh+1daNzRXOjW+G0hAE4IhV2Vuf7GhTAWueQV0IO +a5aZ2yb+M5RZgI5txNEeKQp3j4qTSd6RRELOFxU3Y9eEhYLxE2MktpdXsWiB +flVydYzB4SPRcuXE924VJBCuzlQoislUjhGGH4xrxaWyKgDYtVo00Rml50eO +KCPRVYAQVF12bN7ZdJQCkjazcxSble5SMuvgldX5hagqu3TKWCtstQRcN+t2 +2oXFKi7O3p2JPCGuoBfB5F2D4AByUWEP5DugA/tUhamIUuz+4M9pulpO7T2x +28o2+jZe1XlX3TX0yeq7mvVwk121uFlLhvsxcfIirl4p5tn3IipU9wuL7C/l +2g4Wbo2I7WRVzoXTQMjIqvV9vW3WjMLRIxBnng2rDEwHWSsXlbcSeKgsHN4Y +unXeBWN0EKQT7fnIsvRr4qaFt9nwRQxOndS+nnpAqp6OijSvv/386RLtpHPM +YO0lglJEs6iSHl8NW/FgE6mVlhiaA0sx5IWJTZbM5iLWXt0GBbGLdpupBhkh +HLmgWe8I2oefSOcBr4xZ/np1CswO2oQjt7ePRH3WwTmTnkWBh2mDMiAkcFIH +GGRpDsmmI2AFQZyO7m94/CcaKQylidSKIGlxjawTfFvbFhOLDJA+THKSzd15 +qwtjC1Y9RwVoq9WaeEtHobyG94XYY3Qa827+VQJG5Vx1b7IREx0acLnF2eJ2 +3TwEob3WKDD7Cjc3W7ReI8Iba17suDjFJqrPF+y5Jtcw0gASgxaOkzCVs4vi ++I7//7Ss5Zp6KzaAWIq3cAvPguESzH2Yjqp/33949+a/ivA/rJjM3UsvzIWb +hIuqrh4Khf4KKn/vXGuqS3T2xJGuHfqusqpcQ/1pPdvjWMpxx4ERcRN+gdIr +US67/dLOp70C1zrI89mqeBsuNG2rD0NO3OXkfCUdBhWBtQJankeVroIyn5eL +WyPoZZNk0LgToAGshC/5VOht1rdASz9b+XXAVgLxI6lsoKLuNeb4GGYfLGL5 +LsCOlPwQC7Z+ELxWlMpZmRf2FX1gAvcqWCE3cC4nQVwZJwp3BVYhiO5qhqmU +IK9EgknAXIgvkZRavhwma7xMU2ym3rTdwnnJxwpkhflLTk6fkq3fTTsrulR5 +aCT4n4QYU9oq+SdZOVWdlqtrYXa+uRPhCh4SAjNAicM9NFVF7NwR5X1Zrxic +zZpmeWzHAZHy11BvLa2k1KaOs1XGL4ViKdn74Pzst+toy1oe2W6FVSOC1RlW +onW2R7TwN221D6cgeOMTI8nVwhbBr7OKz3YnHfFynIycKBgAwSVYTr5GGJSv +kOOvCRTN16H6zb9qUl2hYz3fmgCqnKKAiXyzctoiF4lzI61L5O7Efn02OqYQ +Y9COjaiSYVkeDLpdPjv8PsnrB5OGmNc0maUajRVMbGlpCuv/ofWaR1cRcpR+ +X4UAzWvdIJn44AQfOKy603qOMZtI4NM31EsAFMxfSwI/PAYBWpOoACXZGgsI +K4GQYHxFIpZBHDwquN1nKEWRZ2ByGOIoP4+wi3EMkgN5+uRkrsonQJK6WE6d +zrDnISslK0jPTMniHJU0Tiq8ihwjr4lysH00QH4V0/+LHd4v7f7uK3mmMmTG +hN54cFF8IAacvuCnOlC/2eXJgZrlFwmi6mw+dVsgtbA2LR7vZeO9gqdfBT8Y +GESkmn1LFPTocofR0DTVaUDoQzyFuc/Lf7apP2vaWHK4vf/IxC2l+TTg0rdc +7n+eaT895Ut4T0tW6basRGOEJc0WxYqzPAbRgyqc/PLLL8UGunLiXVSyFMWr +It/S4ndF73wW3xfHfzh9UZz0P5pOKoMa+YI1xpCpcBe/Dz7Rz8cvTl8AlyV5 +0kmRTSUdCnarDia/zk56GLH30FnRU0/TieFmZP8cRhx6zsBrTxJQtFf9Rxb/ +/qoYfMIkxa97VRwPPe6kyF5pOj5Y2LnMGv3zyzGwuScMUqv0HAl1ib73SD2g +LHyoX88C87R1i55f7+trtcwsv5pSzD50eCGYOxqgPx6zO6cTaed1X8fm4b3c +I2kFZt2G7p7fTOvEtC51QdWsDnvqdu3XpDb7S6zNHrSkzy/FmDm/PGUYX9gR +2IqNHhIkUpXX4VuYyKgbiXbyyDzjm3wbA/nXsyl9cxP5N5vwN5vwG9uEmDIn +FWZ9FlSWlB5YzZ4hKedpoG/5DpJ6iNSVnfqo7kvJ+T3LkTJRySvqTCJECaxs +PA8SPUhZJEyVvxRFFFaAiH2StMmEt/tsoNaZiud1V+t2nmYj2ZvpOJ0tMw1t +Pxy1FQmglCDzjfBfT7LlGAe8Tq3IsK/RIDMjraMMZkXXbkslfDph6aMs8Ksi +G+93B+xNt5Licoefv5PXwJISO3BdJFLJ3oLw9kO/DWshPyaVns3nP4pgr1pL +QjH4u1dFd9f963GcE/tWVv4tHDBx8HkQ19tJ/Lf66tdOJKzVZPgGCx+a/fAF +9oOv7MBIU9qaJydimC9uB+5o9jICZm4VzNv8Ika3Cb9xLt9oT4v3a+CCCD2h +hKfX1YDngtyWXKHLxlJBA/0sGPxjtQZmBttXvg/G1sn3ZqPizkNdh7cs1Vvv +aBjukPmXtEPG4PM6uWHLMgFK67qRQM6uuTvZb0ZnyeE+rwXU0XMy0VZod49S +PjjfhiUOpuKMKTP5r74JeTkUCE7QLadPPOpsuYzd4KtaovqeCj8PS1ULoVY4 +z5fV9o7ko9ry+Kz+wHJT7zJGrnfVA4ZqX1rGApsq9pfVgDFb4JViYrpfaDXQ +fUOwBaXDXOTDa5kFtXzY37ta09TGs4ruFsRaP745b2XUSoHifKTKKkvIOO8C +Uu9W46KlDVhXLKPahNerZW9QnM8aCHT1SUp9ZVsIs47Z07OL6bCJ9v/XgXit +I+IBAA== + +--> + +</rfc> + |