aboutsummaryrefslogtreecommitdiffstats
path: root/docs/report/dpdk_performance_tests/overview.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/report/dpdk_performance_tests/overview.rst')
-rw-r--r--docs/report/dpdk_performance_tests/overview.rst240
1 files changed, 0 insertions, 240 deletions
diff --git a/docs/report/dpdk_performance_tests/overview.rst b/docs/report/dpdk_performance_tests/overview.rst
deleted file mode 100644
index 02651d7e53..0000000000
--- a/docs/report/dpdk_performance_tests/overview.rst
+++ /dev/null
@@ -1,240 +0,0 @@
-Overview
-========
-
-Tested Physical Topologies
---------------------------
-
-CSIT DPDK performance tests are executed on physical baremetal servers hosted
-by :abbr:`LF (Linux Foundation)` FD.io project. Testbed physical topology is
-shown in the figure below.::
-
- +------------------------+ +------------------------+
- | | | |
- | +------------------+ | | +------------------+ |
- | | | | | | | |
- | | <-----------------> | |
- | | DUT1 | | | | DUT2 | |
- | +--^---------------+ | | +---------------^--+ |
- | | | | | |
- | | SUT1 | | SUT2 | |
- +------------------------+ +------------------^-----+
- | |
- | |
- | +-----------+ |
- | | | |
- +------------------> TG <------------------+
- | |
- +-----------+
-
-SUT1 and SUT2 are two System Under Test servers (Cisco UCS C240, each with two
-Intel XEON CPUs), TG is a Traffic Generator (TG, another Cisco UCS C240, with
-two Intel XEON CPUs). SUTs run Testpmd/L3FWD SW SW application in Linux
-user-mode as a Device Under Test (DUT). TG runs TRex SW application as a packet
-Traffic Generator. Physical connectivity between SUTs and to TG is provided
-using different NIC models that need to be tested for performance. Currently
-installed and tested NIC models include:
-
-#. 2port10GE X520-DA2 Intel.
-#. 2port10GE X710 Intel.
-#. 2port10GE VIC1227 Cisco.
-#. 2port40GE VIC1385 Cisco.
-#. 2port40GE XL710 Intel.
-
-From SUT and DUT perspective, all performance tests involve forwarding packets
-between two physical Ethernet ports (10GE or 40GE). Due to the number of
-listed NIC models tested and available PCI slot capacity in SUT servers, in
-all of the above cases both physical ports are located on the same NIC. In
-some test cases this results in measured packet throughput being limited not
-by VPP DUT but by either the physical interface or the NIC capacity.
-
-Going forward CSIT project will be looking to add more hardware into FD.io
-performance labs to address larger scale multi-interface and multi-NIC
-performance testing scenarios.
-
-Note that reported DUT (DPDK) performance results are specific to the SUTs
-tested. Current :abbr:`LF (Linux Foundation)` FD.io SUTs are based on Intel
-XEON E5-2699v3 2.3GHz CPUs. SUTs with other CPUs are likely to yield different
-results. A good rule of thumb, that can be applied to estimate DPDK packet
-thoughput for Phy-to-Phy (NIC-to-NIC, PCI-to-PCI) topology, is to expect
-the forwarding performance to be proportional to CPU core frequency,
-assuming CPU is the only limiting factor and all other SUT parameters
-equivalent to FD.io CSIT environment. The same rule of thumb can be also
-applied for Phy-to-VM/LXC-to-Phy (NIC-to-VM/LXC-to-NIC) topology, but due to
-much higher dependency on intensive memory operations and sensitivity to Linux
-kernel scheduler settings and behaviour, this estimation may not always yield
-good enough accuracy.
-
-For detailed :abbr:`LF (Linux Foundation)` FD.io test bed specification and
-physical topology please refer to `LF FD.io CSIT testbed wiki page
-<https://wiki.fd.io/view/CSIT/CSIT_LF_testbed>`_.
-
-Performance Tests Coverage
---------------------------
-
-Performance tests are split into two main categories:
-
-- Throughput discovery - discovery of packet forwarding rate using binary search
- in accordance to :rfc:`2544`.
-
- - NDR - discovery of Non Drop Rate packet throughput, at zero packet loss;
- followed by one-way packet latency measurements at 10%, 50% and 100% of
- discovered NDR throughput.
- - PDR - discovery of Partial Drop Rate, with specified non-zero packet loss
- currently set to 0.5%; followed by one-way packet latency measurements at
- 100% of discovered PDR throughput.
-
-- Throughput verification - verification of packet forwarding rate against
- previously discovered throughput rate. These tests are currently done against
- 0.9 of reference NDR, with reference rates updated periodically.
-
-CSIT |release| includes following performance test suites, listed per NIC type:
-
-- 2port10GE X520-DA2 Intel
-
- - **L2IntLoop** - L2 Interface Loop forwarding any Ethernet frames between
- two Interfaces.
-
-- 2port40GE XL710 Intel
-
- - **L2IntLoop** - L2 Interface Loop forwarding any Ethernet frames between
- two Interfaces.
-
-- 2port10GE X520-DA2 Intel
-
- - **IPv4 Routed Forwarding** - L3 IP forwarding of Ethernet frames between
- two Interfaces.
-
-Execution of performance tests takes time, especially the throughput discovery
-tests. Due to limited HW testbed resources available within FD.io labs hosted
-by Linux Foundation, the number of tests for NICs other than X520 (a.k.a.
-Niantic) has been limited to few baseline tests. Over time we expect the HW
-testbed resources to grow, and will be adding complete set of performance
-tests for all models of hardware to be executed regularly and(or)
-continuously.
-
-Performance Tests Naming
-------------------------
-
-CSIT |release| follows a common structured naming convention for all performance
-and system functional tests, introduced in CSIT |release-1|.
-
-The naming should be intuitive for majority of the tests. Complete description
-of CSIT test naming convention is provided on `CSIT test naming wiki
-<https://wiki.fd.io/view/CSIT/csit-test-naming>`_.
-
-Methodology: Multi-Core and Multi-Threading
--------------------------------------------
-
-**Intel Hyper-Threading** - CSIT |release| performance tests are executed with
-SUT servers' Intel XEON processors configured in Intel Hyper-Threading Disabled
-mode (BIOS setting). This is the simplest configuration used to establish
-baseline single-thread single-core application packet processing and forwarding
-performance. Subsequent releases of CSIT will add performance tests with Intel
-Hyper-Threading Enabled (requires BIOS settings change and hard reboot of
-server).
-
-**Multi-core Tests** - CSIT |release| multi-core tests are executed in the
-following VPP thread and core configurations:
-
-#. 1t1c - 1 pmd worker thread on 1 CPU physical core.
-#. 2t2c - 2 pmd worker threads on 2 CPU physical cores.
-
-Note that in many tests running Testpmd/L3FWD reaches tested NIC I/O bandwidth
-or packets-per-second limit.
-
-Methodology: Packet Throughput
-------------------------------
-
-Following values are measured and reported for packet throughput tests:
-
-- NDR binary search per :rfc:`2544`:
-
- - Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps
- (2x <per direction packets-per-second>)"
- - Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per
- second> Gbps (untagged)"
-
-- PDR binary search per :rfc:`2544`:
-
- - Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps (2x
- <per direction packets-per-second>)"
- - Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per
- second> Gbps (untagged)"
- - Packet loss tolerance: "LOSS_ACCEPTANCE <accepted percentage of packets
- lost at PDR rate>""
-
-- NDR and PDR are measured for the following L2 frame sizes:
-
- - IPv4: 64B, 1518B, 9000B.
-
-All rates are reported from external Traffic Generator perspective.
-
-
-Methodology: Packet Latency
----------------------------
-
-TRex Traffic Generator (TG) is used for measuring latency of Testpmd DUTs.
-Reported latency values are measured using following methodology:
-
-- Latency tests are performed at 10%, 50% of discovered NDR rate (non drop rate)
- for each NDR throughput test and packet size (except IMIX).
-- TG sends dedicated latency streams, one per direction, each at the rate of
- 10kpps at the prescribed packet size; these are sent in addition to the main
- load streams.
-- TG reports min/avg/max latency values per stream direction, hence two sets
- of latency values are reported per test case; future release of TRex is
- expected to report latency percentiles.
-- Reported latency values are aggregate across two SUTs due to three node
- topology used for all performance tests; for per SUT latency, reported value
- should be divided by two.
-- 1usec is the measurement accuracy advertised by TRex TG for the setup used in
- FD.io labs used by CSIT project.
-- TRex setup introduces an always-on error of about 2*2usec per latency flow -
- additonal Tx/Rx interface latency induced by TRex SW writing and reading
- packet timestamps on CPU cores without HW acceleration on NICs closer to the
- interface line.
-
-Methodology: TRex Traffic Generator Usage
------------------------------------------
-
-The `TRex traffic generator <https://wiki.fd.io/view/TRex>`_ is used for all
-CSIT performance tests. TRex stateless mode is used to measure NDR and PDR
-throughputs using binary search (NDR and PDR discovery tests) and for quick
-checks of DUT performance against the reference NDRs (NDR check tests) for
-specific configuration.
-
-TRex is installed and run on the TG compute node. The typical procedure is:
-
-- If the TRex is not already installed on TG, it is installed in the
- suite setup phase - see `TRex intallation`_.
-- TRex configuration is set in its configuration file
- ::
-
- /etc/trex_cfg.yaml
-
-- TRex is started in the background mode
- ::
-
- $ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --iom 0 > /tmp/trex.log 2>&1 &' > /dev/null
-
-- There are traffic streams dynamically prepared for each test, based on traffic
- profiles. The traffic is sent and the statistics obtained using
- :command:`trex_stl_lib.api.STLClient`.
-
-**Measuring packet loss**
-
-- Create an instance of STLClient
-- Connect to the client
-- Add all streams
-- Clear statistics
-- Send the traffic for defined time
-- Get the statistics
-
-If there is a warm-up phase required, the traffic is sent also before test and
-the statistics are ignored.
-
-**Measuring latency**
-
-If measurement of latency is requested, two more packet streams are created (one
-for each direction) with TRex flow_stats parameter set to STLFlowLatencyStats. In
-that case, returned statistics will also include min/avg/max latency values.