diff options
Diffstat (limited to 'resources/libraries/python/DropRateSearch.py')
-rw-r--r-- | resources/libraries/python/DropRateSearch.py | 162 |
1 files changed, 80 insertions, 82 deletions
diff --git a/resources/libraries/python/DropRateSearch.py b/resources/libraries/python/DropRateSearch.py index e87ef95434..49e64d9219 100644 --- a/resources/libraries/python/DropRateSearch.py +++ b/resources/libraries/python/DropRateSearch.py @@ -20,7 +20,6 @@ from enum import Enum, unique @unique class SearchDirection(Enum): """Direction of linear search.""" - TOP_DOWN = 1 BOTTOM_UP = 2 @@ -28,7 +27,6 @@ class SearchDirection(Enum): @unique class SearchResults(Enum): """Result of the drop rate search.""" - SUCCESS = 1 FAILURE = 2 SUSPICIOUS = 3 @@ -37,7 +35,6 @@ class SearchResults(Enum): @unique class RateType(Enum): """Type of rate units.""" - PERCENTAGE = 1 PACKETS_PER_SECOND = 2 BITS_PER_SECOND = 3 @@ -46,7 +43,6 @@ class RateType(Enum): @unique class LossAcceptanceType(Enum): """Type of the loss acceptance criteria.""" - FRAMES = 1 PERCENTAGE = 2 @@ -54,16 +50,13 @@ class LossAcceptanceType(Enum): @unique class SearchResultType(Enum): """Type of search result evaluation.""" - BEST_OF_N = 1 WORST_OF_N = 2 -class DropRateSearch(object): +class DropRateSearch(metaclass=ABCMeta): """Abstract class with search algorithm implementation.""" - __metaclass__ = ABCMeta - def __init__(self): # duration of traffic run (binary, linear) self._duration = 60 @@ -86,8 +79,8 @@ class DropRateSearch(object): # permitted values: LossAcceptanceType self._loss_acceptance_type = LossAcceptanceType.FRAMES # size of frames to send - self._frame_size = "64" - # binary convergence criterium type is self._rate_type + self._frame_size = u"64" + # binary convergence criterion type is self._rate_type self._binary_convergence_threshold = 5000 # numbers of traffic runs during one rate step self._max_attempts = 1 @@ -105,11 +98,11 @@ class DropRateSearch(object): :returns: Latency stats. :rtype: list """ - pass @abstractmethod - def measure_loss(self, rate, frame_size, loss_acceptance, - loss_acceptance_type, traffic_profile, skip_warmup=False): + def measure_loss( + self, rate, frame_size, loss_acceptance, loss_acceptance_type, + traffic_profile, skip_warmup=False): """Send traffic from TG and measure count of dropped frames. :param rate: Offered traffic load. @@ -118,7 +111,7 @@ class DropRateSearch(object): :param loss_acceptance_type: Type of permitted loss. :param traffic_profile: Module name to use for traffic generation. :param skip_warmup: Start TRex without warmup traffic if true. - :type rate: int + :type rate: float :type frame_size: str :type loss_acceptance: float :type loss_acceptance_type: LossAcceptanceType @@ -127,7 +120,6 @@ class DropRateSearch(object): :returns: Drop threshold exceeded? (True/False) :rtype: bool """ - pass def set_search_rate_boundaries(self, max_rate, min_rate): """Set search boundaries: min,max. @@ -140,53 +132,55 @@ class DropRateSearch(object): :raises ValueError: If min rate is lower than 0 or higher than max rate. """ if float(min_rate) <= 0: - raise ValueError("min_rate must be higher than 0") + msg = u"min_rate must be higher than 0" elif float(min_rate) > float(max_rate): - raise ValueError("min_rate must be lower than max_rate") + msg = u"min_rate must be lower than max_rate" else: self._rate_max = float(max_rate) self._rate_min = float(min_rate) + return + raise ValueError(msg) def set_loss_acceptance(self, loss_acceptance): - """Set loss acceptance treshold for PDR search. + """Set loss acceptance threshold for PDR search. - :param loss_acceptance: Loss acceptance treshold for PDR search. + :param loss_acceptance: Loss acceptance threshold for PDR search. :type loss_acceptance: str :returns: nothing :raises ValueError: If loss acceptance is lower than zero. """ - if float(loss_acceptance) < 0: - raise ValueError("Loss acceptance must be higher or equal 0") - else: + if float(loss_acceptance) >= 0: self._loss_acceptance = float(loss_acceptance) + else: + raise ValueError(u"Loss acceptance must be higher or equal 0") def get_loss_acceptance(self): - """Return configured loss acceptance treshold. + """Return configured loss acceptance threshold. - :returns: Loss acceptance treshold. + :returns: Loss acceptance threshold. :rtype: float """ return self._loss_acceptance def set_loss_acceptance_type_percentage(self): - """Set loss acceptance treshold type to percentage. + """Set loss acceptance threshold type to percentage. :returns: nothing """ self._loss_acceptance_type = LossAcceptanceType.PERCENTAGE def set_loss_acceptance_type_frames(self): - """Set loss acceptance treshold type to frames. + """Set loss acceptance threshold type to frames. :returns: nothing """ self._loss_acceptance_type = LossAcceptanceType.FRAMES def loss_acceptance_type_is_percentage(self): - """Return true if loss acceptance treshold type is percentage, + """Return true if loss acceptance threshold type is percentage, false otherwise. - :returns: True if loss acceptance treshold type is percentage. + :returns: True if loss acceptance threshold type is percentage. :rtype: boolean """ return self._loss_acceptance_type == LossAcceptanceType.PERCENTAGE @@ -229,10 +223,10 @@ class DropRateSearch(object): :returns: nothing :raises Exception: If rate type is unknown. """ - if rate_type not in RateType: - raise Exception("rate_type unknown: {}".format(rate_type)) - else: + if rate_type in RateType: self._rate_type = rate_type + else: + raise Exception(f"rate_type unknown: {rate_type}") def set_search_frame_size(self, frame_size): """Set size of frames to send. @@ -263,7 +257,7 @@ class DropRateSearch(object): def set_binary_convergence_threshold(self, convergence): """Set convergence for binary search. - :param convergence: Treshold value number. + :param convergence: Threshold value number. :type convergence: float :returns: nothing """ @@ -272,7 +266,7 @@ class DropRateSearch(object): def get_binary_convergence_threshold(self): """Get convergence for binary search. - :returns: Treshold value number. + :returns: Threshold value number. :rtype: float """ return self._binary_convergence_threshold @@ -285,13 +279,14 @@ class DropRateSearch(object): :raises ValueError: If rate type is unknown. """ if self._rate_type == RateType.PERCENTAGE: - return "%" + retval = u"%" elif self._rate_type == RateType.BITS_PER_SECOND: - return "bps" + retval = u"bps" elif self._rate_type == RateType.PACKETS_PER_SECOND: - return "pps" + retval = u"pps" else: - raise ValueError("RateType unknown") + raise ValueError(u"RateType unknown") + return retval def set_max_attempts(self, max_attempts): """Set maximum number of traffic runs during one rate step. @@ -304,7 +299,7 @@ class DropRateSearch(object): if int(max_attempts) > 0: self._max_attempts = int(max_attempts) else: - raise ValueError("Max attempt must by greater than zero") + raise ValueError(u"Max attempt must by greater than zero") def get_max_attempts(self): """Return maximum number of traffic runs during one rate step. @@ -336,10 +331,10 @@ class DropRateSearch(object): :returns: nothing :raises ValueError: If search type is unknown. """ - if search_type not in SearchResultType: - raise ValueError("search_type unknown: {}".format(search_type)) - else: + if search_type in SearchResultType: self._search_result_type = search_type + else: + raise ValueError(f"search_type unknown: {search_type}") @staticmethod def _get_best_of_n(res_list): @@ -375,11 +370,12 @@ class DropRateSearch(object): :raises ValueError: If search result type is unknown. """ if self._search_result_type == SearchResultType.BEST_OF_N: - return self._get_best_of_n(res_list) + retval = self._get_best_of_n(res_list) elif self._search_result_type == SearchResultType.WORST_OF_N: - return self._get_worst_of_n(res_list) + retval = self._get_worst_of_n(res_list) else: - raise ValueError("Unknown search result type") + raise ValueError(u"Unknown search result type") + return retval def linear_search(self, start_rate, traffic_profile): """Linear search of rate with loss below acceptance criteria. @@ -391,9 +387,8 @@ class DropRateSearch(object): :returns: nothing :raises ValueError: If start rate is not in range. """ - if not self._rate_min <= float(start_rate) <= self._rate_max: - raise ValueError("Start rate is not in min,max range") + raise ValueError(u"Start rate is not in min,max range") rate = float(start_rate) # the last but one step @@ -403,9 +398,12 @@ class DropRateSearch(object): while True: res = [] for dummy in range(self._max_attempts): - res.append(self.measure_loss( - rate, self._frame_size, self._loss_acceptance, - self._loss_acceptance_type, traffic_profile)) + res.append( + self.measure_loss( + rate, self._frame_size, self._loss_acceptance, + self._loss_acceptance_type, traffic_profile + ) + ) res = self._get_res_based_on_search_type(res) @@ -419,21 +417,19 @@ class DropRateSearch(object): # one last step with rate set to _rate_min rate = self._rate_min continue - else: - self._search_result = SearchResults.FAILURE - self._search_result_rate = None - return - else: - continue + self._search_result = SearchResults.FAILURE + self._search_result_rate = None + return + continue # no loss => non/partial drop rate found elif res: self._search_result = SearchResults.SUCCESS self._search_result_rate = rate return else: - raise RuntimeError("Unknown search result") + raise RuntimeError(u"Unknown search result") else: - raise Exception("Unknown search direction") + raise Exception(u"Unknown search direction") def verify_search_result(self): """Fail if search was not successful. @@ -442,13 +438,14 @@ class DropRateSearch(object): :rtype: tuple :raises Exception: If search failed. """ - if self._search_result in [ - SearchResults.SUCCESS, SearchResults.SUSPICIOUS]: + if self._search_result in \ + [SearchResults.SUCCESS, SearchResults.SUSPICIOUS]: return self._search_result_rate, self.get_latency() - raise Exception('Search FAILED') + raise Exception(u"Search FAILED") - def binary_search(self, b_min, b_max, traffic_profile, skip_max_rate=False, - skip_warmup=False): + def binary_search( + self, b_min, b_max, traffic_profile, skip_max_rate=False, + skip_warmup=False): """Binary search of rate with loss below acceptance criteria. :param b_min: Min range rate. @@ -464,13 +461,12 @@ class DropRateSearch(object): :returns: nothing :raises ValueError: If input values are not valid. """ - if not self._rate_min <= float(b_min) <= self._rate_max: - raise ValueError("Min rate is not in min,max range") + raise ValueError(u"Min rate is not in min,max range") if not self._rate_min <= float(b_max) <= self._rate_max: - raise ValueError("Max rate is not in min,max range") + raise ValueError(u"Max rate is not in min,max range") if float(b_max) < float(b_min): - raise ValueError("Min rate is greater than max rate") + raise ValueError(u"Min rate is greater than max rate") # rate is half of interval + start of interval if not using max rate rate = ((float(b_max) - float(b_min)) / 2) + float(b_min) \ @@ -492,7 +488,8 @@ class DropRateSearch(object): res.append(self.measure_loss( rate, self._frame_size, self._loss_acceptance, self._loss_acceptance_type, traffic_profile, - skip_warmup=skip_warmup)) + skip_warmup=skip_warmup + )) res = self._get_res_based_on_search_type(res) @@ -514,11 +511,10 @@ class DropRateSearch(object): :returns: nothing :raises RuntimeError: If linear search failed. """ - self.linear_search(start_rate, traffic_profile) - if self._search_result in [SearchResults.SUCCESS, - SearchResults.SUSPICIOUS]: + if self._search_result in \ + [SearchResults.SUCCESS, SearchResults.SUSPICIOUS]: b_min = self._search_result_rate b_max = self._search_result_rate + self._rate_linear_step @@ -537,15 +533,16 @@ class DropRateSearch(object): # we will use binary search to refine search in one linear step self.binary_search(b_min, b_max, traffic_profile, True) - # linear and binary search succeed - if self._search_result == SearchResults.SUCCESS: - return + # linear search succeed but binary failed or suspicious - else: + if self._search_result != SearchResults.SUCCESS: self._search_result = SearchResults.SUSPICIOUS self._search_result_rate = temp_rate + # linear and binary search succeed + else: + return else: - raise RuntimeError("Linear search FAILED") + raise RuntimeError(u"Linear search FAILED") @staticmethod def floats_are_close_equal(num_a, num_b, rel_tol=1e-9, abs_tol=0.0): @@ -553,23 +550,24 @@ class DropRateSearch(object): :param num_a: First number to compare. :param num_b: Second number to compare. - :param rel_tol=1e-9: The relative tolerance. - :param abs_tol=0.0: The minimum absolute tolerance level. + :param rel_tol: The relative tolerance. + :param abs_tol: The minimum absolute tolerance level. (Optional, + default value: 0.0) :type num_a: float :type num_b: float :type rel_tol: float :type abs_tol: float :returns: Returns True if num_a is close in value to num_b or equal. - False otherwise. + False otherwise. :rtype: boolean :raises ValueError: If input values are not valid. """ - if num_a == num_b: return True if rel_tol < 0.0 or abs_tol < 0.0: - raise ValueError('Error tolerances must be non-negative') + raise ValueError(u"Error tolerances must be non-negative") - return abs(num_b - num_a) <= max(rel_tol * max(abs(num_a), abs(num_b)), - abs_tol) + return abs(num_b - num_a) <= max( + rel_tol * max(abs(num_a), abs(num_b)), abs_tol + ) |