aboutsummaryrefslogtreecommitdiffstats
path: root/resources/libraries/python/MLRsearch/ReceiveRateMeasurement.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/libraries/python/MLRsearch/ReceiveRateMeasurement.py')
-rw-r--r--resources/libraries/python/MLRsearch/ReceiveRateMeasurement.py125
1 files changed, 0 insertions, 125 deletions
diff --git a/resources/libraries/python/MLRsearch/ReceiveRateMeasurement.py b/resources/libraries/python/MLRsearch/ReceiveRateMeasurement.py
deleted file mode 100644
index c52934530e..0000000000
--- a/resources/libraries/python/MLRsearch/ReceiveRateMeasurement.py
+++ /dev/null
@@ -1,125 +0,0 @@
-# Copyright (c) 2021 Cisco and/or its affiliates.
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at:
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""Module defining ReceiveRateMeasurement class."""
-
-
-class ReceiveRateMeasurement:
- """Structure defining the result of single Rr measurement."""
-
- def __init__(
- self, duration, target_tr, transmit_count, loss_count,
- approximated_duration=0.0, partial_transmit_count=0,
- effective_loss_ratio=None):
- """Constructor, normalize primary and compute secondary quantities.
-
- If approximated_duration is nonzero, it is stored.
- If approximated_duration is zero, duration value is stored.
- Either way, additional secondary quantities are computed
- from the store value.
-
- If there is zero transmit_count, ratios are set to zero.
-
- In some cases, traffic generator does not attempt all the needed
- transactions. In that case, nonzero partial_transmit_count
- holds (an estimate of) count of the actually attempted transactions.
- This is used to populate some secondary quantities.
-
- TODO: Use None instead of zero?
-
- Field effective_loss_ratio is specific for use in MLRsearch,
- where measurements with lower loss ratio at higher target_tr
- cannot be relied upon if there is a measurement with higher loss ratio
- at lower target_tr. In this case, the higher loss ratio from
- other measurement is stored as effective loss ratio in this measurement.
- If None, the computed loss ratio of this measurement is used.
- If not None, the computed ratio can still be apllied if it is larger.
-
- :param duration: Measurement duration [s].
- :param target_tr: Target transmit rate [pps].
- If bidirectional traffic is measured, this is bidirectional rate.
- :param transmit_count: Number of packets transmitted [1].
- :param loss_count: Number of packets transmitted but not received [1].
- :param approximated_duration: Estimate of the actual time of the trial.
- :param partial_transmit_count: Estimate count of actually attempted
- transactions.
- :param effective_loss_ratio: None or highest loss ratio so far.
- :type duration: float
- :type target_tr: float
- :type transmit_count: int
- :type loss_count: int
- :type approximated_duration: float
- :type partial_transmit_count: int
- """
- self.duration = float(duration)
- self.target_tr = float(target_tr)
- self.transmit_count = int(transmit_count)
- self.loss_count = int(loss_count)
- self.receive_count = transmit_count - loss_count
- self.transmit_rate = transmit_count / self.duration
- self.loss_rate = loss_count / self.duration
- self.receive_rate = self.receive_count / self.duration
- self.loss_ratio = (
- float(self.loss_count) / self.transmit_count
- if self.transmit_count > 0 else 1.0
- )
- self.effective_loss_ratio = self.loss_ratio
- if effective_loss_ratio is not None:
- if effective_loss_ratio > self.loss_ratio:
- self.effective_loss_ratio = float(effective_loss_ratio)
- self.receive_ratio = (
- float(self.receive_count) / self.transmit_count
- if self.transmit_count > 0 else 0.0
- )
- self.approximated_duration = (
- float(approximated_duration) if approximated_duration
- else self.duration
- )
- self.approximated_receive_rate = (
- self.receive_count / self.approximated_duration
- if self.approximated_duration > 0.0 else 0.0
- )
- # If the traffic generator is unreliable and sends less packets,
- # the absolute receive rate might be too low for next target.
- self.partial_transmit_count = (
- int(partial_transmit_count) if partial_transmit_count
- else self.transmit_count
- )
- self.partial_receive_ratio = (
- float(self.receive_count) / self.partial_transmit_count
- if self.partial_transmit_count > 0 else 0.0
- )
- self.partial_receive_rate = (
- self.target_tr * self.partial_receive_ratio
- )
- # We use relative packet ratios in order to support cases
- # where target_tr is in transactions per second,
- # but there are multiple packets per transaction.
- self.relative_receive_rate = (
- self.target_tr * self.receive_count / self.transmit_count
- )
-
- def __str__(self):
- """Return string reporting input and loss ratio."""
- return f"d={self.duration!s},Tr={self.target_tr!s}," \
- f"Df={self.loss_ratio!s}"
-
- def __repr__(self):
- """Return string evaluable as a constructor call."""
- return f"ReceiveRateMeasurement(duration={self.duration!r}," \
- f"target_tr={self.target_tr!r}," \
- f"transmit_count={self.transmit_count!r}," \
- f"loss_count={self.loss_count!r}," \
- f"approximated_duration={self.approximated_duration!r}," \
- f"partial_transmit_count={self.partial_transmit_count!r}," \
- f"effective_loss_ratio={self.effective_loss_ratio!r})"