aboutsummaryrefslogtreecommitdiffstats
path: root/resources/libraries/python/PLRsearch
diff options
context:
space:
mode:
Diffstat (limited to 'resources/libraries/python/PLRsearch')
-rw-r--r--resources/libraries/python/PLRsearch/PLRsearch.py28
1 files changed, 14 insertions, 14 deletions
diff --git a/resources/libraries/python/PLRsearch/PLRsearch.py b/resources/libraries/python/PLRsearch/PLRsearch.py
index 0314a80efb..7599a9e64d 100644
--- a/resources/libraries/python/PLRsearch/PLRsearch.py
+++ b/resources/libraries/python/PLRsearch/PLRsearch.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2022 Cisco and/or its affiliates.
+# Copyright (c) 2023 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
@@ -195,8 +195,8 @@ class PLRsearch:
# exponential impact. Make it configurable, or is 4:3 good enough?
if measurement.loss_ratio >= self.packet_loss_ratio_target:
for _ in range(4 * zeros):
- lossy_loads.append(measurement.target_tr)
- if measurement.loss_count > 0:
+ lossy_loads.append(measurement.intended_load)
+ if measurement.loss_ratio > 0.0:
zeros = 0
lossy_loads.sort()
if stop_time <= time.time():
@@ -205,7 +205,7 @@ class PLRsearch:
if (trial_number - self.trial_number_offset) <= 1:
next_load = max_rate
elif (trial_number - self.trial_number_offset) <= 3:
- next_load = (measurement.relative_receive_rate / (
+ next_load = (measurement.relative_forwarding_rate / (
1.0 - self.packet_loss_ratio_target))
else:
next_load = (avg1 + avg2) / 2.0
@@ -441,7 +441,7 @@ class PLRsearch:
Instead, the expected average loss is scaled according to the number
of packets actually sent.
- TODO: Copy ReceiveRateMeasurement from MLRsearch.
+ TODO: Copy MeasurementResult from MLRsearch.
:param trace: A multiprocessing-friendly logging function (closure).
:param lfit_func: Fitting function, typically lfit_spread or lfit_erf.
@@ -450,7 +450,7 @@ class PLRsearch:
:param spread: The spread parameter for the fitting function.
:type trace: function (str, object) -> None
:type lfit_func: Function from 3 floats to float.
- :type trial_result_list: list of MLRsearch.ReceiveRateMeasurement
+ :type trial_result_list: list of MLRsearch.MeasurementResult
:type mrr: float
:type spread: float
:returns: Logarithm of result weight for given function and parameters.
@@ -460,17 +460,17 @@ class PLRsearch:
trace(u"log_weight for mrr", mrr)
trace(u"spread", spread)
for result in trial_result_list:
- trace(u"for tr", result.target_tr)
+ trace(u"for tr", result.intended_load)
trace(u"lc", result.loss_count)
- trace(u"d", result.duration)
- # _rel_ values use units of target_tr (transactions per second).
+ trace(u"d", result.intended_duration)
+ # _rel_ values use units of intended_load (transactions per second).
log_avg_rel_loss_per_second = lfit_func(
- trace, result.target_tr, mrr, spread
+ trace, result.intended_load, mrr, spread
)
# _abs_ values use units of loss count (maybe packets).
# There can be multiple packets per transaction.
log_avg_abs_loss_per_trial = log_avg_rel_loss_per_second + math.log(
- result.transmit_count / result.target_tr
+ result.offered_count / result.intended_load
)
# Geometric probability computation for logarithms.
log_trial_likelihood = log_plus(0.0, -log_avg_abs_loss_per_trial)
@@ -524,7 +524,7 @@ class PLRsearch:
:param max_samples: Limit for integrator samples, for debugging.
:type trial_duration: float
:type transmit_rate: float
- :type trial_result_list: list of MLRsearch.ReceiveRateMeasurement
+ :type trial_result_list: list of MLRsearch.MeasurementResult
:type min_rate: float
:type max_rate: float
:type focus_trackers: 2-tuple of None or stat_trackers.VectorStatTracker
@@ -705,7 +705,7 @@ class PLRsearch:
:param measurement: The trial measurement obtained during computation.
:param stretch_result: Computation output for stretch fitting function.
:param erf_result: Computation output for erf fitting function.
- :type measurement: ReceiveRateMeasurement
+ :type measurement: MeasurementResult
:type stretch_result: _PartialResult
:type erf_result: _PartialResult
:returns: Combined results.
@@ -754,7 +754,7 @@ _ComputeResult = namedtuple(
:param stretch_exp_avg: Stretch fitting function estimate average exponentiated.
:param erf_exp_avg: Erf fitting function estimate average, exponentiated.
:param trackers: Pair of focus trackers to start next iteration with.
-:type measurement: ReceiveRateMeasurement
+:type measurement: MeasurementResult
:type avg: float
:type stdev: float
:type stretch_exp_avg: float