aboutsummaryrefslogtreecommitdiffstats
path: root/resources/libraries/python/PLRsearch
diff options
context:
space:
mode:
Diffstat (limited to 'resources/libraries/python/PLRsearch')
-rw-r--r--resources/libraries/python/PLRsearch/PLRsearch.py25
1 files changed, 15 insertions, 10 deletions
diff --git a/resources/libraries/python/PLRsearch/PLRsearch.py b/resources/libraries/python/PLRsearch/PLRsearch.py
index ce65fd2ec8..0e78cc936d 100644
--- a/resources/libraries/python/PLRsearch/PLRsearch.py
+++ b/resources/libraries/python/PLRsearch/PLRsearch.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2021 Cisco and/or its affiliates.
+# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
@@ -564,6 +564,20 @@ class PLRsearch:
:rtype: multiprocessing.Connection
"""
+ boss_pipe_end, worker_pipe_end = multiprocessing.Pipe()
+ # Starting the worker first. Contrary to documentation
+ # https://docs.python.org/3/library/multiprocessing.html#multiprocessing.connection.Connection
+ # sending of large object without active listener on the other side
+ # results in a deadlock, not in a ValueError.
+ # See https://stackoverflow.com/questions/15137292/large-objects-and-multiprocessing-pipes-and-send
+ worker = multiprocessing.Process(
+ target=Integrator.try_estimate_nd,
+ args=(worker_pipe_end, 10.0, self.trace_enabled)
+ )
+ worker.daemon = True
+ worker.start()
+
+ # Only now it is safe to send the function to compute with.
def value_logweight_func(trace, x_mrr, x_spread):
"""Return log of critical rate and log of likelihood.
@@ -609,15 +623,6 @@ class PLRsearch:
return value, logweight
dilled_function = dill.dumps(value_logweight_func)
- boss_pipe_end, worker_pipe_end = multiprocessing.Pipe()
- # Do not send yet, run the worker first to avoid a deadlock.
- # See https://stackoverflow.com/a/15716500
- worker = multiprocessing.Process(
- target=Integrator.try_estimate_nd,
- args=(worker_pipe_end, 10.0, self.trace_enabled)
- )
- worker.daemon = True
- worker.start()
boss_pipe_end.send(
(dimension, dilled_function, focus_tracker, max_samples)
)