aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/report/graphs.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/dash/app/pal/report/graphs.py')
-rw-r--r--resources/tools/dash/app/pal/report/graphs.py36
1 files changed, 30 insertions, 6 deletions
diff --git a/resources/tools/dash/app/pal/report/graphs.py b/resources/tools/dash/app/pal/report/graphs.py
index d5dd0b8cce..92cf5ca989 100644
--- a/resources/tools/dash/app/pal/report/graphs.py
+++ b/resources/tools/dash/app/pal/report/graphs.py
@@ -24,6 +24,22 @@ import hdrh.histogram
import hdrh.codec
+_FREQURENCY = { # [GHz]
+ "2n-aws": 1.000,
+ "2n-dnv": 2.000,
+ "2n-clx": 2.300,
+ "2n-icx": 2.600,
+ "2n-skx": 2.500,
+ "2n-tx2": 2.500,
+ "2n-zn2": 2.900,
+ "3n-alt": 3.000,
+ "3n-aws": 1.000,
+ "3n-dnv": 2.000,
+ "3n-icx": 2.600,
+ "3n-skx": 2.500,
+ "3n-tsh": 2.200
+}
+
_VALUE = {
"mrr": "result_receive_rate_rate_values",
"ndr": "result_ndr_lower_rate_value",
@@ -144,7 +160,8 @@ def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
return df
-def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict) -> tuple:
+def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict,
+ normalize: bool) -> tuple:
"""
"""
@@ -162,13 +179,18 @@ def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict) -> tuple:
itm_data = select_iterative_data(data, itm)
if itm_data.empty:
continue
+ phy = itm["phy"].split("-")
+ topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
+ norm_factor = 2.0 / _FREQURENCY[topo_arch] if normalize else 1.0
if itm["testtype"] == "mrr":
- y_data = itm_data[_VALUE[itm["testtype"]]].to_list()[0]
- if y_data.size > 0:
+ y_data_raw = itm_data[_VALUE[itm["testtype"]]].to_list()[0]
+ y_data = [y * norm_factor for y in y_data_raw]
+ if len(y_data) > 0:
y_tput_max = \
max(y_data) if max(y_data) > y_tput_max else y_tput_max
else:
- y_data = itm_data[_VALUE[itm["testtype"]]].to_list()
+ y_data_raw = itm_data[_VALUE[itm["testtype"]]].to_list()
+ y_data = [y * norm_factor for y in y_data_raw]
if y_data:
y_tput_max = \
max(y_data) if max(y_data) > y_tput_max else y_tput_max
@@ -190,7 +212,8 @@ def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict) -> tuple:
show_tput = True
if itm["testtype"] == "pdr":
- y_lat = itm_data[_VALUE["pdr-lat"]].to_list()
+ y_lat_row = itm_data[_VALUE["pdr-lat"]].to_list()
+ y_lat = [y * norm_factor for y in y_lat_row]
if y_lat:
y_lat_max = max(y_lat) if max(y_lat) > y_lat_max else y_lat_max
nr_of_samples = len(y_lat)
@@ -232,7 +255,8 @@ def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict) -> tuple:
return fig_tput, fig_lat
-def table_comparison(data: pd.DataFrame, sel:dict) -> pd.DataFrame:
+def table_comparison(data: pd.DataFrame, sel:dict,
+ normalize: bool) -> pd.DataFrame:
"""
"""
table = pd.DataFrame(