diff options
Diffstat (limited to 'resources/tools/dash/app/pal/trending/graphs.py')
-rw-r--r-- | resources/tools/dash/app/pal/trending/graphs.py | 333 |
1 files changed, 175 insertions, 158 deletions
diff --git a/resources/tools/dash/app/pal/trending/graphs.py b/resources/tools/dash/app/pal/trending/graphs.py index 0760d9cc80..dc4e7afca8 100644 --- a/resources/tools/dash/app/pal/trending/graphs.py +++ b/resources/tools/dash/app/pal/trending/graphs.py @@ -158,187 +158,204 @@ def _classify_anomalies(data): return classification, avgs, stdevs -def graph_trending_tput(data: pd.DataFrame, sel:dict, layout: dict, - start: datetime, end: datetime) -> tuple: +def select_trending_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame: """ """ - if not sel: - return None, None + phy = itm["phy"].split("-") + if len(phy) == 4: + topo, arch, nic, drv = phy + if drv in ("dpdk", "ixgbe"): + drv = "" + else: + drv += "-" + drv = drv.replace("_", "-") + else: + return None + cadence = \ + "weekly" if (arch == "aws" or itm["testtype"] != "mrr") else "daily" + sel_topo_arch = ( + f"csit-vpp-perf-" + f"{itm['testtype'] if itm['testtype'] == 'mrr' else 'ndrpdr'}-" + f"{cadence}-master-{topo}-{arch}" + ) + df_sel = data.loc[(data["job"] == sel_topo_arch)] + regex = ( + f"^.*{nic}.*\.{itm['framesize']}-{itm['core']}-{drv}{itm['test']}-" + f"{'mrr' if itm['testtype'] == 'mrr' else 'ndrpdr'}$" + ) + df = df_sel.loc[ + df_sel["test_id"].apply( + lambda x: True if re.search(regex, x) else False + ) + ].sort_values(by="start_time", ignore_index=True) - def _generate_traces(ttype: str, name: str, df: pd.DataFrame, - start: datetime, end: datetime, color: str) -> list: + return df - df = df.dropna(subset=[_VALUE[ttype], ]) - if df.empty: - return list() - x_axis = [d for d in df["start_time"] if d >= start and d <= end] +def _generate_trending_traces(ttype: str, name: str, df: pd.DataFrame, + start: datetime, end: datetime, color: str) -> list: + """ + """ - anomalies, trend_avg, trend_stdev = _classify_anomalies( - {k: v for k, v in zip(x_axis, df[_VALUE[ttype]])} + df = df.dropna(subset=[_VALUE[ttype], ]) + if df.empty: + return list() + + x_axis = [d for d in df["start_time"] if d >= start and d <= end] + + anomalies, trend_avg, trend_stdev = _classify_anomalies( + {k: v for k, v in zip(x_axis, df[_VALUE[ttype]])} + ) + + hover = list() + customdata = list() + for _, row in df.iterrows(): + hover_itm = ( + f"date: {row['start_time'].strftime('%d-%m-%Y %H:%M:%S')}<br>" + f"<prop> [{row[_UNIT[ttype]]}]: {row[_VALUE[ttype]]}<br>" + f"<stdev>" + f"{row['dut_type']}-ref: {row['dut_version']}<br>" + f"csit-ref: {row['job']}/{row['build']}<br>" + f"hosts: {', '.join(row['hosts'])}" ) - - hover = list() - customdata = list() - for _, row in df.iterrows(): - hover_itm = ( - f"date: {row['start_time'].strftime('%d-%m-%Y %H:%M:%S')}<br>" - f"<prop> [{row[_UNIT[ttype]]}]: {row[_VALUE[ttype]]}<br>" - f"<stdev>" - f"{row['dut_type']}-ref: {row['dut_version']}<br>" - f"csit-ref: {row['job']}/{row['build']}" + if ttype == "mrr": + stdev = ( + f"stdev [{row['result_receive_rate_rate_unit']}]: " + f"{row['result_receive_rate_rate_stdev']}<br>" ) - if ttype == "mrr": - stdev = ( - f"stdev [{row['result_receive_rate_rate_unit']}]: " - f"{row['result_receive_rate_rate_stdev']}<br>" - ) - else: - stdev = "" - hover_itm = hover_itm.replace( - "<prop>", "latency" if ttype == "pdr-lat" else "average" - ).replace("<stdev>", stdev) - hover.append(hover_itm) - if ttype == "pdr-lat": - customdata.append(_get_hdrh_latencies(row, name)) - - hover_trend = list() - for avg, stdev in zip(trend_avg, trend_stdev): - if ttype == "pdr-lat": - hover_trend.append( - f"trend [us]: {avg}<br>" - f"stdev [us]: {stdev}" - ) - else: - hover_trend.append( - f"trend [pps]: {avg}<br>" - f"stdev [pps]: {stdev}" - ) - - traces = [ - go.Scatter( # Samples - x=x_axis, - y=df[_VALUE[ttype]], - name=name, - mode="markers", - marker={ - u"size": 5, - u"color": color, - u"symbol": u"circle", - }, - text=hover, - hoverinfo=u"text+name", - showlegend=True, - legendgroup=name, - customdata=customdata - ), - go.Scatter( # Trend line - x=x_axis, - y=trend_avg, - name=name, - mode="lines", - line={ - u"shape": u"linear", - u"width": 1, - u"color": color, - }, - text=hover_trend, - hoverinfo=u"text+name", + else: + stdev = "" + hover_itm = hover_itm.replace( + "<prop>", "latency" if ttype == "pdr-lat" else "average" + ).replace("<stdev>", stdev) + hover.append(hover_itm) + if ttype == "pdr-lat": + customdata.append(_get_hdrh_latencies(row, name)) + + hover_trend = list() + for avg, stdev, (_, row) in zip(trend_avg, trend_stdev, df.iterrows()): + hover_itm = ( + f"date: {row['start_time'].strftime('%d-%m-%Y %H:%M:%S')}<br>" + f"trend [pps]: {avg}<br>" + f"stdev [pps]: {stdev}<br>" + f"{row['dut_type']}-ref: {row['dut_version']}<br>" + f"csit-ref: {row['job']}/{row['build']}<br>" + f"hosts: {', '.join(row['hosts'])}" + ) + if ttype == "pdr-lat": + hover_itm = hover_itm.replace("[pps]", "[us]") + hover_trend.append(hover_itm) + + traces = [ + go.Scatter( # Samples + x=x_axis, + y=df[_VALUE[ttype]], + name=name, + mode="markers", + marker={ + u"size": 5, + u"color": color, + u"symbol": u"circle", + }, + text=hover, + hoverinfo=u"text+name", + showlegend=True, + legendgroup=name, + customdata=customdata + ), + go.Scatter( # Trend line + x=x_axis, + y=trend_avg, + name=name, + mode="lines", + line={ + u"shape": u"linear", + u"width": 1, + u"color": color, + }, + text=hover_trend, + hoverinfo=u"text+name", + showlegend=False, + legendgroup=name, + ) + ] + + if anomalies: + anomaly_x = list() + anomaly_y = list() + anomaly_color = list() + for idx, anomaly in enumerate(anomalies): + if anomaly in (u"regression", u"progression"): + anomaly_x.append(x_axis[idx]) + anomaly_y.append(trend_avg[idx]) + anomaly_color.append(_ANOMALY_COLOR[anomaly]) + anomaly_color.extend([0.0, 0.5, 1.0]) + traces.append( + go.Scatter( + x=anomaly_x, + y=anomaly_y, + mode=u"markers", + hoverinfo=u"none", showlegend=False, legendgroup=name, - ) - ] - - if anomalies: - anomaly_x = list() - anomaly_y = list() - anomaly_color = list() - for idx, anomaly in enumerate(anomalies): - if anomaly in (u"regression", u"progression"): - anomaly_x.append(x_axis[idx]) - anomaly_y.append(trend_avg[idx]) - anomaly_color.append(_ANOMALY_COLOR[anomaly]) - anomaly_color.extend([0.0, 0.5, 1.0]) - traces.append( - go.Scatter( - x=anomaly_x, - y=anomaly_y, - mode=u"markers", - hoverinfo=u"none", - showlegend=False, - legendgroup=name, - name=f"{name}-anomalies", - marker={ - u"size": 15, - u"symbol": u"circle-open", - u"color": anomaly_color, - u"colorscale": _COLORSCALE_LAT \ - if ttype == "pdr-lat" else _COLORSCALE_TPUT, - u"showscale": True, - u"line": { - u"width": 2 - }, - u"colorbar": { - u"y": 0.5, - u"len": 0.8, - u"title": u"Circles Marking Data Classification", - u"titleside": u"right", - # u"titlefont": { - # u"size": 14 - # }, - u"tickmode": u"array", - u"tickvals": [0.167, 0.500, 0.833], - u"ticktext": _TICK_TEXT_LAT \ - if ttype == "pdr-lat" else _TICK_TEXT_TPUT, - u"ticks": u"", - u"ticklen": 0, - u"tickangle": -90, - u"thickness": 10 - } + name=f"{name}-anomalies", + marker={ + u"size": 15, + u"symbol": u"circle-open", + u"color": anomaly_color, + u"colorscale": _COLORSCALE_LAT \ + if ttype == "pdr-lat" else _COLORSCALE_TPUT, + u"showscale": True, + u"line": { + u"width": 2 + }, + u"colorbar": { + u"y": 0.5, + u"len": 0.8, + u"title": u"Circles Marking Data Classification", + u"titleside": u"right", + # u"titlefont": { + # u"size": 14 + # }, + u"tickmode": u"array", + u"tickvals": [0.167, 0.500, 0.833], + u"ticktext": _TICK_TEXT_LAT \ + if ttype == "pdr-lat" else _TICK_TEXT_TPUT, + u"ticks": u"", + u"ticklen": 0, + u"tickangle": -90, + u"thickness": 10 } - ) + } ) + ) + + return traces + + +def graph_trending(data: pd.DataFrame, sel:dict, layout: dict, + start: datetime, end: datetime) -> tuple: + """ + """ - return traces + if not sel: + return None, None - # Generate graph: fig_tput = None fig_lat = None for idx, itm in enumerate(sel): - phy = itm["phy"].split("-") - if len(phy) == 4: - topo, arch, nic, drv = phy - if drv in ("dpdk", "ixgbe"): - drv = "" - else: - drv += "-" - drv = drv.replace("_", "-") - else: + + df = select_trending_data(data, itm) + if df is None: continue - cadence = \ - "weekly" if (arch == "aws" or itm["testtype"] != "mrr") else "daily" - sel_topo_arch = ( - f"csit-vpp-perf-" - f"{itm['testtype'] if itm['testtype'] == 'mrr' else 'ndrpdr'}-" - f"{cadence}-master-{topo}-{arch}" - ) - df_sel = data.loc[(data["job"] == sel_topo_arch)] - regex = ( - f"^.*{nic}.*\.{itm['framesize']}-{itm['core']}-{drv}{itm['test']}-" - f"{'mrr' if itm['testtype'] == 'mrr' else 'ndrpdr'}$" - ) - df = df_sel.loc[ - df_sel["test_id"].apply( - lambda x: True if re.search(regex, x) else False - ) - ].sort_values(by="start_time", ignore_index=True) + name = ( f"{itm['phy']}-{itm['framesize']}-{itm['core']}-" f"{itm['test']}-{itm['testtype']}" ) - traces = _generate_traces( + traces = _generate_trending_traces( itm["testtype"], name, df, start, end, _COLORS[idx % len(_COLORS)] ) if traces: @@ -347,7 +364,7 @@ def graph_trending_tput(data: pd.DataFrame, sel:dict, layout: dict, fig_tput.add_traces(traces) if itm["testtype"] == "pdr": - traces = _generate_traces( + traces = _generate_trending_traces( "pdr-lat", name, df, start, end, _COLORS[idx % len(_COLORS)] ) if traces: |