aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/trending/graphs.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/dash/app/pal/trending/graphs.py')
-rw-r--r--resources/tools/dash/app/pal/trending/graphs.py167
1 files changed, 133 insertions, 34 deletions
diff --git a/resources/tools/dash/app/pal/trending/graphs.py b/resources/tools/dash/app/pal/trending/graphs.py
index b71c3271a0..0760d9cc80 100644
--- a/resources/tools/dash/app/pal/trending/graphs.py
+++ b/resources/tools/dash/app/pal/trending/graphs.py
@@ -14,11 +14,13 @@
"""
"""
-
import plotly.graph_objects as go
import pandas as pd
import re
+import hdrh.histogram
+import hdrh.codec
+
from datetime import datetime
from numpy import isnan
@@ -26,29 +28,10 @@ from ..jumpavg import classify
_COLORS = (
- u"#1A1110",
- u"#DA2647",
- u"#214FC6",
- u"#01786F",
- u"#BD8260",
- u"#FFD12A",
- u"#A6E7FF",
- u"#738276",
- u"#C95A49",
- u"#FC5A8D",
- u"#CEC8EF",
- u"#391285",
- u"#6F2DA8",
- u"#FF878D",
- u"#45A27D",
- u"#FFD0B9",
- u"#FD5240",
- u"#DB91EF",
- u"#44D7A8",
- u"#4F86F7",
- u"#84DE02",
- u"#FFCFF1",
- u"#614051"
+ u"#1A1110", u"#DA2647", u"#214FC6", u"#01786F", u"#BD8260", u"#FFD12A",
+ u"#A6E7FF", u"#738276", u"#C95A49", u"#FC5A8D", u"#CEC8EF", u"#391285",
+ u"#6F2DA8", u"#FF878D", u"#45A27D", u"#FFD0B9", u"#FD5240", u"#DB91EF",
+ u"#44D7A8", u"#4F86F7", u"#84DE02", u"#FFCFF1", u"#614051"
)
_ANOMALY_COLOR = {
u"regression": 0.0,
@@ -85,6 +68,44 @@ _UNIT = {
"pdr": "result_pdr_lower_rate_unit",
"pdr-lat": "result_latency_forward_pdr_50_unit"
}
+_LAT_HDRH = ( # Do not change the order
+ "result_latency_forward_pdr_0_hdrh",
+ "result_latency_reverse_pdr_0_hdrh",
+ "result_latency_forward_pdr_10_hdrh",
+ "result_latency_reverse_pdr_10_hdrh",
+ "result_latency_forward_pdr_50_hdrh",
+ "result_latency_reverse_pdr_50_hdrh",
+ "result_latency_forward_pdr_90_hdrh",
+ "result_latency_reverse_pdr_90_hdrh",
+)
+# This value depends on latency stream rate (9001 pps) and duration (5s).
+# Keep it slightly higher to ensure rounding errors to not remove tick mark.
+PERCENTILE_MAX = 99.999501
+
+_GRAPH_LAT_HDRH_DESC = {
+ u"result_latency_forward_pdr_0_hdrh": u"No-load.",
+ u"result_latency_reverse_pdr_0_hdrh": u"No-load.",
+ u"result_latency_forward_pdr_10_hdrh": u"Low-load, 10% PDR.",
+ u"result_latency_reverse_pdr_10_hdrh": u"Low-load, 10% PDR.",
+ u"result_latency_forward_pdr_50_hdrh": u"Mid-load, 50% PDR.",
+ u"result_latency_reverse_pdr_50_hdrh": u"Mid-load, 50% PDR.",
+ u"result_latency_forward_pdr_90_hdrh": u"High-load, 90% PDR.",
+ u"result_latency_reverse_pdr_90_hdrh": u"High-load, 90% PDR."
+}
+
+
+def _get_hdrh_latencies(row: pd.Series, name: str) -> dict:
+ """
+ """
+
+ latencies = {"name": name}
+ for key in _LAT_HDRH:
+ try:
+ latencies[key] = row[key]
+ except KeyError:
+ return None
+
+ return latencies
def _classify_anomalies(data):
@@ -137,8 +158,8 @@ def _classify_anomalies(data):
return classification, avgs, stdevs
-def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
- end: datetime):
+def graph_trending_tput(data: pd.DataFrame, sel:dict, layout: dict,
+ start: datetime, end: datetime) -> tuple:
"""
"""
@@ -146,7 +167,7 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
return None, None
def _generate_traces(ttype: str, name: str, df: pd.DataFrame,
- start: datetime, end: datetime, color: str):
+ start: datetime, end: datetime, color: str) -> list:
df = df.dropna(subset=[_VALUE[ttype], ])
if df.empty:
@@ -159,6 +180,7 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
)
hover = list()
+ customdata = list()
for _, row in df.iterrows():
hover_itm = (
f"date: {row['start_time'].strftime('%d-%m-%Y %H:%M:%S')}<br>"
@@ -178,6 +200,8 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
"<prop>", "latency" if ttype == "pdr-lat" else "average"
).replace("<stdev>", stdev)
hover.append(hover_itm)
+ if ttype == "pdr-lat":
+ customdata.append(_get_hdrh_latencies(row, name))
hover_trend = list()
for avg, stdev in zip(trend_avg, trend_stdev):
@@ -207,6 +231,7 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
hoverinfo=u"text+name",
showlegend=True,
legendgroup=name,
+ customdata=customdata
),
go.Scatter( # Trend line
x=x_axis,
@@ -259,9 +284,9 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
u"len": 0.8,
u"title": u"Circles Marking Data Classification",
u"titleside": u"right",
- u"titlefont": {
- u"size": 14
- },
+ # u"titlefont": {
+ # u"size": 14
+ # },
u"tickmode": u"array",
u"tickvals": [0.167, 0.500, 0.833],
u"ticktext": _TICK_TEXT_LAT \
@@ -319,8 +344,7 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
if traces:
if not fig_tput:
fig_tput = go.Figure()
- for trace in traces:
- fig_tput.add_trace(trace)
+ fig_tput.add_traces(traces)
if itm["testtype"] == "pdr":
traces = _generate_traces(
@@ -329,8 +353,7 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
if traces:
if not fig_lat:
fig_lat = go.Figure()
- for trace in traces:
- fig_lat.add_trace(trace)
+ fig_lat.add_traces(traces)
if fig_tput:
fig_tput.update_layout(layout.get("plot-trending-tput", dict()))
@@ -338,3 +361,79 @@ def trending_tput(data: pd.DataFrame, sel:dict, layout: dict, start: datetime,
fig_lat.update_layout(layout.get("plot-trending-lat", dict()))
return fig_tput, fig_lat
+
+
+def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
+ """
+ """
+
+ fig = None
+
+ try:
+ name = data.pop("name")
+ except (KeyError, AttributeError):
+ return None
+
+ traces = list()
+ for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
+ try:
+ decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
+ except (hdrh.codec.HdrLengthException, TypeError) as err:
+ continue
+ previous_x = 0.0
+ prev_perc = 0.0
+ xaxis = list()
+ yaxis = list()
+ hovertext = list()
+ for item in decoded.get_recorded_iterator():
+ # The real value is "percentile".
+ # For 100%, we cut that down to "x_perc" to avoid
+ # infinity.
+ percentile = item.percentile_level_iterated_to
+ x_perc = min(percentile, PERCENTILE_MAX)
+ xaxis.append(previous_x)
+ yaxis.append(item.value_iterated_to)
+ hovertext.append(
+ f"<b>{_GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
+ f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>"
+ f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
+ f"Latency: {item.value_iterated_to}uSec"
+ )
+ next_x = 100.0 / (100.0 - x_perc)
+ xaxis.append(next_x)
+ yaxis.append(item.value_iterated_to)
+ hovertext.append(
+ f"<b>{_GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
+ f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>"
+ f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
+ f"Latency: {item.value_iterated_to}uSec"
+ )
+ previous_x = next_x
+ prev_perc = percentile
+
+ traces.append(
+ go.Scatter(
+ x=xaxis,
+ y=yaxis,
+ name=_GRAPH_LAT_HDRH_DESC[lat_name],
+ mode=u"lines",
+ legendgroup=_GRAPH_LAT_HDRH_DESC[lat_name],
+ showlegend=bool(idx % 2),
+ line=dict(
+ color=_COLORS[int(idx/2)],
+ dash=u"solid",
+ width=1 if idx % 2 else 2
+ ),
+ hovertext=hovertext,
+ hoverinfo=u"text"
+ )
+ )
+ if traces:
+ fig = go.Figure()
+ fig.add_traces(traces)
+ layout_hdrh = layout.get("plot-hdrh-latency", None)
+ if lat_hdrh:
+ layout_hdrh["title"]["text"] = f"<b>{name}</b>"
+ fig.update_layout(layout_hdrh)
+
+ return fig