diff options
Diffstat (limited to 'resources/tools/dash/app/pal')
-rw-r--r-- | resources/tools/dash/app/pal/data/data.py | 8 | ||||
-rw-r--r-- | resources/tools/dash/app/pal/data/data.yaml | 17 | ||||
-rw-r--r-- | resources/tools/dash/app/pal/data/utils.py | 69 | ||||
-rw-r--r-- | resources/tools/dash/app/pal/news/layout.py | 119 | ||||
-rw-r--r-- | resources/tools/dash/app/pal/news/tables.py | 43 | ||||
-rw-r--r-- | resources/tools/dash/app/pal/trending/graphs.py | 57 |
6 files changed, 239 insertions, 74 deletions
diff --git a/resources/tools/dash/app/pal/data/data.py b/resources/tools/dash/app/pal/data/data.py index f2c02acc63..296db024c0 100644 --- a/resources/tools/dash/app/pal/data/data.py +++ b/resources/tools/dash/app/pal/data/data.py @@ -213,15 +213,15 @@ class Data: days=days ), self._create_dataframe_from_parquet( - path=self._get_path("statistics-trending"), + path=self._get_path("statistics-trending-mrr"), partition_filter=l_mrr, - columns=self._get_columns("statistics-trending"), + columns=self._get_columns("statistics-trending-mrr"), days=days ), self._create_dataframe_from_parquet( - path=self._get_path("statistics-trending"), + path=self._get_path("statistics-trending-ndrpdr"), partition_filter=l_ndrpdr, - columns=self._get_columns("statistics-trending"), + columns=self._get_columns("statistics-trending-ndrpdr"), days=days ) ) diff --git a/resources/tools/dash/app/pal/data/data.yaml b/resources/tools/dash/app/pal/data/data.yaml index 2585ef0e84..59533f97a4 100644 --- a/resources/tools/dash/app/pal/data/data.yaml +++ b/resources/tools/dash/app/pal/data/data.yaml @@ -5,7 +5,7 @@ statistics: - build - start_time - duration -statistics-trending: +statistics-trending-ndrpdr: path: s3://fdio-docs-s3-cloudfront-index/csit/parquet/trending columns: - job @@ -13,8 +13,23 @@ statistics-trending: - dut_type - dut_version - hosts + - start_time + - passed + - test_id + - result_pdr_lower_rate_value + - result_ndr_lower_rate_value +statistics-trending-mrr: + path: s3://fdio-docs-s3-cloudfront-index/csit/parquet/trending + columns: + - job + - build + - dut_type + - dut_version + - hosts + - start_time - passed - test_id + - result_receive_rate_rate_avg trending-mrr: path: s3://fdio-docs-s3-cloudfront-index/csit/parquet/trending columns: diff --git a/resources/tools/dash/app/pal/data/utils.py b/resources/tools/dash/app/pal/data/utils.py new file mode 100644 index 0000000000..63c9c1aaa4 --- /dev/null +++ b/resources/tools/dash/app/pal/data/utils.py @@ -0,0 +1,69 @@ +# Copyright (c) 2022 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +""" + +from numpy import isnan + +from ..jumpavg import classify + + +def classify_anomalies(data): + """Process the data and return anomalies and trending values. + + Gather data into groups with average as trend value. + Decorate values within groups to be normal, + the first value of changed average as a regression, or a progression. + + :param data: Full data set with unavailable samples replaced by nan. + :type data: OrderedDict + :returns: Classification and trend values + :rtype: 3-tuple, list of strings, list of floats and list of floats + """ + # NaN means something went wrong. + # Use 0.0 to cause that being reported as a severe regression. + bare_data = [0.0 if isnan(sample) else sample for sample in data.values()] + # TODO: Make BitCountingGroupList a subclass of list again? + group_list = classify(bare_data).group_list + group_list.reverse() # Just to use .pop() for FIFO. + classification = list() + avgs = list() + stdevs = list() + active_group = None + values_left = 0 + avg = 0.0 + stdv = 0.0 + for sample in data.values(): + if isnan(sample): + classification.append("outlier") + avgs.append(sample) + stdevs.append(sample) + continue + if values_left < 1 or active_group is None: + values_left = 0 + while values_left < 1: # Ignore empty groups (should not happen). + active_group = group_list.pop() + values_left = len(active_group.run_list) + avg = active_group.stats.avg + stdv = active_group.stats.stdev + classification.append(active_group.comment) + avgs.append(avg) + stdevs.append(stdv) + values_left -= 1 + continue + classification.append("normal") + avgs.append(avg) + stdevs.append(stdv) + values_left -= 1 + return classification, avgs, stdevs diff --git a/resources/tools/dash/app/pal/news/layout.py b/resources/tools/dash/app/pal/news/layout.py index b8edb7a683..2f66ce5c81 100644 --- a/resources/tools/dash/app/pal/news/layout.py +++ b/resources/tools/dash/app/pal/news/layout.py @@ -27,7 +27,8 @@ from yaml import load, FullLoader, YAMLError from copy import deepcopy from ..data.data import Data -from .tables import table_failed +from ..data.utils import classify_anomalies +from .tables import table_news class Layout: @@ -37,6 +38,9 @@ class Layout: # The default job displayed when the page is loaded first time. DEFAULT_JOB = "csit-vpp-perf-mrr-daily-master-2n-icx" + # Time period for regressions and progressions. + TIME_PERIOD = 21 # [days] + def __init__(self, app: Flask, html_layout_file: str, data_spec_file: str, tooltip_file: str) -> None: """Initialization: @@ -69,7 +73,7 @@ class Layout: data_stats, data_mrr, data_ndrpdr = Data( data_spec_file=self._data_spec_file, debug=True - ).read_stats(days=10) # To be sure + ).read_stats(days=self.TIME_PERIOD) df_tst_info = pd.concat([data_mrr, data_ndrpdr], ignore_index=True) @@ -94,6 +98,16 @@ class Layout: self._default = self._set_job_params(self.DEFAULT_JOB) # Pre-process the data: + + def _create_test_name(test: str) -> str: + lst_tst = test.split(".") + suite = lst_tst[-2].replace("2n1l-", "").replace("1n1l-", "").\ + replace("2n-", "") + return f"{suite.split('-')[0]}-{lst_tst[-1]}" + + def _get_rindex(array: list, itm: any) -> int: + return len(array) - 1 - array[::-1].index(itm) + tst_info = { "job": list(), "build": list(), @@ -101,9 +115,12 @@ class Layout: "dut_type": list(), "dut_version": list(), "hosts": list(), - "lst_failed": list() + "failed": list(), + "regressions": list(), + "progressions": list() } for job in jobs: + # Create lists of failed tests: df_job = df_tst_info.loc[(df_tst_info["job"] == job)] last_build = max(df_job["build"].unique()) df_build = df_job.loc[(df_job["build"] == last_build)] @@ -121,13 +138,95 @@ class Layout: l_failed = list() try: for tst in failed_tests: - lst_tst = tst.split(".") - suite = lst_tst[-2].replace("2n1l-", "").\ - replace("1n1l-", "").replace("2n-", "") - l_failed.append(f"{suite.split('-')[0]}-{lst_tst[-1]}") + l_failed.append(_create_test_name(tst)) except KeyError: l_failed = list() - tst_info["lst_failed"].append(sorted(l_failed)) + tst_info["failed"].append(sorted(l_failed)) + + # Create lists of regressions and progressions: + l_reg = list() + l_prog = list() + + tests = df_job["test_id"].unique() + for test in tests: + tst_data = df_job.loc[df_job["test_id"] == test].sort_values( + by="start_time", ignore_index=True) + x_axis = tst_data["start_time"].tolist() + if "-ndrpdr" in test: + tst_data = tst_data.dropna( + subset=["result_pdr_lower_rate_value", ] + ) + if tst_data.empty: + continue + try: + anomalies, _, _ = classify_anomalies({ + k: v for k, v in zip( + x_axis, + tst_data["result_ndr_lower_rate_value"].tolist() + ) + }) + except ValueError: + continue + if "progression" in anomalies: + l_prog.append(( + _create_test_name(test).replace("-ndrpdr", "-ndr"), + x_axis[_get_rindex(anomalies, "progression")] + )) + if "regression" in anomalies: + l_reg.append(( + _create_test_name(test).replace("-ndrpdr", "-ndr"), + x_axis[_get_rindex(anomalies, "regression")] + )) + try: + anomalies, _, _ = classify_anomalies({ + k: v for k, v in zip( + x_axis, + tst_data["result_pdr_lower_rate_value"].tolist() + ) + }) + except ValueError: + continue + if "progression" in anomalies: + l_prog.append(( + _create_test_name(test).replace("-ndrpdr", "-pdr"), + x_axis[_get_rindex(anomalies, "progression")] + )) + if "regression" in anomalies: + l_reg.append(( + _create_test_name(test).replace("-ndrpdr", "-pdr"), + x_axis[_get_rindex(anomalies, "regression")] + )) + else: # mrr + tst_data = tst_data.dropna( + subset=["result_receive_rate_rate_avg", ] + ) + if tst_data.empty: + continue + try: + anomalies, _, _ = classify_anomalies({ + k: v for k, v in zip( + x_axis, + tst_data["result_receive_rate_rate_avg"].\ + tolist() + ) + }) + except ValueError: + continue + if "progression" in anomalies: + l_prog.append(( + _create_test_name(test), + x_axis[_get_rindex(anomalies, "progression")] + )) + if "regression" in anomalies: + l_reg.append(( + _create_test_name(test), + x_axis[_get_rindex(anomalies, "regression")] + )) + + tst_info["regressions"].append( + sorted(l_reg, key=lambda k: k[1], reverse=True)) + tst_info["progressions"].append( + sorted(l_prog, key=lambda k: k[1], reverse=True)) self._data = pd.DataFrame.from_dict(tst_info) @@ -156,7 +255,7 @@ class Layout: f"{self._tooltip_file}\n{err}" ) - self._default_tab_failed = table_failed(self.data, self._default["job"]) + self._default_tab_failed = table_news(self.data, self._default["job"]) # Callbacks: if self._app is not None and hasattr(self, 'callbacks'): @@ -659,7 +758,7 @@ class Layout: ctrl_panel.get("dd-tbeds-value") ) ctrl_panel.set({"al-job-children": job}) - tab_failed = table_failed(self.data, job) + tab_failed = table_news(self.data, job) ret_val = [ ctrl_panel.panel, diff --git a/resources/tools/dash/app/pal/news/tables.py b/resources/tools/dash/app/pal/news/tables.py index c8f851b030..53b24608d5 100644 --- a/resources/tools/dash/app/pal/news/tables.py +++ b/resources/tools/dash/app/pal/news/tables.py @@ -18,17 +18,30 @@ import pandas as pd import dash_bootstrap_components as dbc -def table_failed(data: pd.DataFrame, job: str) -> list: +# Time period for regressions and progressions. +TIME_PERIOD = 21 # [days] + + +def table_news(data: pd.DataFrame, job: str) -> list: """ """ job_data = data.loc[(data["job"] == job)] - failed = job_data["lst_failed"].to_list()[0] + failed = job_data["failed"].to_list()[0] + regressions = {"Test Name": list(), "Last Regression": list()} + for itm in job_data["regressions"].to_list()[0]: + regressions["Test Name"].append(itm[0]) + regressions["Last Regression"].append(itm[1].strftime('%Y-%m-%d %H:%M')) + progressions = {"Test Name": list(), "Last Progression": list()} + for itm in job_data["progressions"].to_list()[0]: + progressions["Test Name"].append(itm[0]) + progressions["Last Progression"].append( + itm[1].strftime('%Y-%m-%d %H:%M')) return [ dbc.Table.from_dataframe(pd.DataFrame.from_dict({ "Job": job_data["job"], - "Build": job_data["build"], + "Last Build": job_data["build"], "Date": job_data["start"], "DUT": job_data["dut_type"], "DUT Version": job_data["dut_version"], @@ -39,5 +52,27 @@ def table_failed(data: pd.DataFrame, job: str) -> list: f"Last Failed Tests on " f"{job_data['start'].values[0]} ({len(failed)})" ): failed - }), bordered=True, striped=True, hover=True, size="sm", color="light") + }), bordered=True, striped=True, hover=True, size="sm", color="light"), + dbc.Label( + class_name="p-0", + size="lg", + children=( + f"Regressions during the last {TIME_PERIOD} days " + f"({len(regressions['Test Name'])})" + ) + ), + dbc.Table.from_dataframe( + pd.DataFrame.from_dict(regressions), + bordered=True, striped=True, hover=True, size="sm", color="light"), + dbc.Label( + class_name="p-0", + size="lg", + children=( + f"Progressions during the last {TIME_PERIOD} days " + f"({len(progressions['Test Name'])})" + ) + ), + dbc.Table.from_dataframe( + pd.DataFrame.from_dict(progressions), + bordered=True, striped=True, hover=True, size="sm", color="light") ] diff --git a/resources/tools/dash/app/pal/trending/graphs.py b/resources/tools/dash/app/pal/trending/graphs.py index 8950558166..a63bebb818 100644 --- a/resources/tools/dash/app/pal/trending/graphs.py +++ b/resources/tools/dash/app/pal/trending/graphs.py @@ -14,7 +14,6 @@ """ """ -import logging import plotly.graph_objects as go import pandas as pd @@ -22,10 +21,8 @@ import hdrh.histogram import hdrh.codec from datetime import datetime -from numpy import isnan - -from ..jumpavg import classify +from ..data.utils import classify_anomalies _NORM_FREQUENCY = 2.0 # [GHz] _FREQURENCY = { # [GHz] @@ -131,56 +128,6 @@ def _get_hdrh_latencies(row: pd.Series, name: str) -> dict: return latencies -def _classify_anomalies(data): - """Process the data and return anomalies and trending values. - - Gather data into groups with average as trend value. - Decorate values within groups to be normal, - the first value of changed average as a regression, or a progression. - - :param data: Full data set with unavailable samples replaced by nan. - :type data: OrderedDict - :returns: Classification and trend values - :rtype: 3-tuple, list of strings, list of floats and list of floats - """ - # NaN means something went wrong. - # Use 0.0 to cause that being reported as a severe regression. - bare_data = [0.0 if isnan(sample) else sample for sample in data.values()] - # TODO: Make BitCountingGroupList a subclass of list again? - group_list = classify(bare_data).group_list - group_list.reverse() # Just to use .pop() for FIFO. - classification = list() - avgs = list() - stdevs = list() - active_group = None - values_left = 0 - avg = 0.0 - stdv = 0.0 - for sample in data.values(): - if isnan(sample): - classification.append("outlier") - avgs.append(sample) - stdevs.append(sample) - continue - if values_left < 1 or active_group is None: - values_left = 0 - while values_left < 1: # Ignore empty groups (should not happen). - active_group = group_list.pop() - values_left = len(active_group.run_list) - avg = active_group.stats.avg - stdv = active_group.stats.stdev - classification.append(active_group.comment) - avgs.append(avg) - stdevs.append(stdv) - values_left -= 1 - continue - classification.append("normal") - avgs.append(avg) - stdevs.append(stdv) - values_left -= 1 - return classification, avgs, stdevs - - def select_trending_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame: """ """ @@ -242,7 +189,7 @@ def _generate_trending_traces(ttype: str, name: str, df: pd.DataFrame, else: y_data = [(itm * norm_factor) for itm in df[_VALUE[ttype]].tolist()] - anomalies, trend_avg, trend_stdev = _classify_anomalies( + anomalies, trend_avg, trend_stdev = classify_anomalies( {k: v for k, v in zip(x_axis, y_data)} ) |