aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_CPTA.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/generator_CPTA.py')
-rw-r--r--resources/tools/presentation/generator_CPTA.py53
1 files changed, 36 insertions, 17 deletions
diff --git a/resources/tools/presentation/generator_CPTA.py b/resources/tools/presentation/generator_CPTA.py
index d4ac06d09f..f96fab0f88 100644
--- a/resources/tools/presentation/generator_CPTA.py
+++ b/resources/tools/presentation/generator_CPTA.py
@@ -22,7 +22,6 @@ import prettytable
import plotly.offline as ploff
import plotly.graph_objs as plgo
import plotly.exceptions as plerr
-import pandas as pd
from collections import OrderedDict
from datetime import datetime
@@ -116,23 +115,40 @@ def _generate_trending_traces(in_data, job_name, build_info,
hover_text = list()
xaxis = list()
for idx in data_x:
+ date = build_info[job_name][str(idx)][0]
+ hover_str = ("date: {0}<br>"
+ "value: {1:,}<br>"
+ "{2}-ref: {3}<br>"
+ "csit-ref: mrr-{4}-build-{5}")
if "dpdk" in job_name:
- hover_text.append("dpdk-ref: {0}<br>csit-ref: mrr-weekly-build-{1}".
- format(build_info[job_name][str(idx)][1].
- rsplit('~', 1)[0], idx))
+ hover_text.append(hover_str.format(
+ date,
+ int(in_data[idx].avg),
+ "dpdk",
+ build_info[job_name][str(idx)][1].
+ rsplit('~', 1)[0],
+ "weekly",
+ idx))
elif "vpp" in job_name:
- hover_text.append("vpp-ref: {0}<br>csit-ref: mrr-daily-build-{1}".
- format(build_info[job_name][str(idx)][1].
- rsplit('~', 1)[0], idx))
- date = build_info[job_name][str(idx)][0]
+ hover_text.append(hover_str.format(
+ date,
+ int(in_data[idx].avg),
+ "vpp",
+ build_info[job_name][str(idx)][1].
+ rsplit('~', 1)[0],
+ "daily",
+ idx))
+
xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
int(date[9:11]), int(date[12:])))
- data_pd = pd.Series(data_y, index=xaxis)
+ data_pd = OrderedDict()
+ for key, value in zip(xaxis, data_y):
+ data_pd[key] = value
anomaly_classification, avgs = classify_anomalies(data_pd)
- anomalies = pd.Series()
+ anomalies = OrderedDict()
anomalies_colors = list()
anomalies_avgs = list()
anomaly_color = {
@@ -141,11 +157,10 @@ def _generate_trending_traces(in_data, job_name, build_info,
"progression": 1.0
}
if anomaly_classification:
- for idx, item in enumerate(data_pd.items()):
+ for idx, (key, value) in enumerate(data_pd.iteritems()):
if anomaly_classification[idx] in \
("outlier", "regression", "progression"):
- anomalies = anomalies.append(pd.Series([item[1], ],
- index=[item[0], ]))
+ anomalies[key] = value
anomalies_colors.append(
anomaly_color[anomaly_classification[idx]])
anomalies_avgs.append(avgs[idx])
@@ -155,7 +170,7 @@ def _generate_trending_traces(in_data, job_name, build_info,
trace_samples = plgo.Scatter(
x=xaxis,
- y=data_y,
+ y=[y.avg for y in data_y],
mode='markers',
line={
"width": 1
@@ -169,7 +184,7 @@ def _generate_trending_traces(in_data, job_name, build_info,
"symbol": "circle",
},
text=hover_text,
- hoverinfo="x+y+text+name"
+ hoverinfo="text"
)
traces = [trace_samples, ]
@@ -185,7 +200,9 @@ def _generate_trending_traces(in_data, job_name, build_info,
},
showlegend=False,
legendgroup=name,
- name='{name}-trend'.format(name=name)
+ name='{name}'.format(name=name),
+ text=["trend: {0:,}".format(int(avg)) for avg in avgs],
+ hoverinfo="text+name"
)
traces.append(trace_trend)
@@ -280,7 +297,7 @@ def _generate_all_charts(spec, input_data):
chart_data[test_name] = OrderedDict()
try:
chart_data[test_name][int(index)] = \
- test["result"]["throughput"]
+ test["result"]["receive-rate"]
except (KeyError, TypeError):
pass
@@ -289,6 +306,8 @@ def _generate_all_charts(spec, input_data):
tst_lst = list()
for bld in builds_dict[job_name]:
itm = tst_data.get(int(bld), '')
+ if not isinstance(itm, str):
+ itm = itm.avg
tst_lst.append(str(itm))
csv_tbl.append("{0},".format(tst_name) + ",".join(tst_lst) + '\n')
# Generate traces: