aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_CPTA.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/generator_CPTA.py')
-rw-r--r--resources/tools/presentation/generator_CPTA.py429
1 files changed, 429 insertions, 0 deletions
diff --git a/resources/tools/presentation/generator_CPTA.py b/resources/tools/presentation/generator_CPTA.py
new file mode 100644
index 0000000000..c1b14f1f55
--- /dev/null
+++ b/resources/tools/presentation/generator_CPTA.py
@@ -0,0 +1,429 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Generation of Continuous Performance Trending and Analysis.
+"""
+
+import datetime
+import logging
+import plotly.offline as ploff
+import plotly.graph_objs as plgo
+import numpy as np
+import pandas as pd
+
+from collections import OrderedDict
+from utils import find_outliers, archive_input_data, execute_command
+
+
+# Command to build the html format of the report
+HTML_BUILDER = 'sphinx-build -v -c conf_cpta -a ' \
+ '-b html -E ' \
+ '-t html ' \
+ '{working_dir} ' \
+ '{build_dir}/'
+
+# .css file for the html format of the report
+THEME_OVERRIDES = """/* override table width restrictions */
+.wy-nav-content {
+ max-width: 1200px !important;
+}
+"""
+
+COLORS = ["SkyBlue", "Olive", "Purple", "Coral", "Indigo", "Pink",
+ "Chocolate", "Brown", "Magenta", "Cyan", "Orange", "Black",
+ "Violet", "Blue", "Yellow"]
+
+
+def generate_cpta(spec, data):
+ """Generate all formats and versions of the Continuous Performance Trending
+ and Analysis.
+
+ :param spec: Specification read from the specification file.
+ :param data: Full data set.
+ :type spec: Specification
+ :type data: InputData
+ """
+
+ logging.info("Generating the Continuous Performance Trending and Analysis "
+ "...")
+
+ ret_code = _generate_all_charts(spec, data)
+
+ cmd = HTML_BUILDER.format(
+ date=datetime.date.today().strftime('%d-%b-%Y'),
+ working_dir=spec.environment["paths"]["DIR[WORKING,SRC]"],
+ build_dir=spec.environment["paths"]["DIR[BUILD,HTML]"])
+ execute_command(cmd)
+
+ with open(spec.environment["paths"]["DIR[CSS_PATCH_FILE]"], "w") as \
+ css_file:
+ css_file.write(THEME_OVERRIDES)
+
+ with open(spec.environment["paths"]["DIR[CSS_PATCH_FILE2]"], "w") as \
+ css_file:
+ css_file.write(THEME_OVERRIDES)
+
+ archive_input_data(spec)
+
+ logging.info("Done.")
+
+ return ret_code
+
+
+def _select_data(in_data, period, fill_missing=False, use_first=False):
+ """Select the data from the full data set. The selection is done by picking
+ the samples depending on the period: period = 1: All, period = 2: every
+ second sample, period = 3: every third sample ...
+
+ :param in_data: Full set of data.
+ :param period: Sampling period.
+ :param fill_missing: If the chosen sample is missing in the full set, its
+ nearest neighbour is used.
+ :param use_first: Use the first sample even though it is not chosen.
+ :type in_data: OrderedDict
+ :type period: int
+ :type fill_missing: bool
+ :type use_first: bool
+ :returns: Reduced data.
+ :rtype: OrderedDict
+ """
+
+ first_idx = min(in_data.keys())
+ last_idx = max(in_data.keys())
+
+ idx = last_idx
+ data_dict = dict()
+ if use_first:
+ data_dict[first_idx] = in_data[first_idx]
+ while idx >= first_idx:
+ data = in_data.get(idx, None)
+ if data is None:
+ if fill_missing:
+ threshold = int(round(idx - period / 2)) + 1 - period % 2
+ idx_low = first_idx if threshold < first_idx else threshold
+ threshold = int(round(idx + period / 2))
+ idx_high = last_idx if threshold > last_idx else threshold
+
+ flag_l = True
+ flag_h = True
+ idx_lst = list()
+ inc = 1
+ while flag_l or flag_h:
+ if idx + inc > idx_high:
+ flag_h = False
+ else:
+ idx_lst.append(idx + inc)
+ if idx - inc < idx_low:
+ flag_l = False
+ else:
+ idx_lst.append(idx - inc)
+ inc += 1
+
+ for i in idx_lst:
+ if i in in_data.keys():
+ data_dict[i] = in_data[i]
+ break
+ else:
+ data_dict[idx] = data
+ idx -= period
+
+ return OrderedDict(sorted(data_dict.items(), key=lambda t: t[0]))
+
+
+def _evaluate_results(in_data, trimmed_data, window=10):
+ """Evaluates if the sample value is regress, normal or progress compared to
+ previous data within the window.
+ We use the intervals defined as:
+ - regress: less than median - 3 * stdev
+ - normal: between median - 3 * stdev and median + 3 * stdev
+ - progress: more than median + 3 * stdev
+
+ :param in_data: Full data set.
+ :param trimmed_data: Full data set without the outliers.
+ :param window: Window size used to calculate moving median and moving stdev.
+ :type in_data: pandas.Series
+ :type trimmed_data: pandas.Series
+ :type window: int
+ :returns: Evaluated results.
+ :rtype: list
+ """
+
+ if len(in_data) > 2:
+ win_size = in_data.size if in_data.size < window else window
+ results = [0.0, ] * win_size
+ median = in_data.rolling(window=win_size).median()
+ stdev_t = trimmed_data.rolling(window=win_size, min_periods=2).std()
+ m_vals = median.values
+ s_vals = stdev_t.values
+ d_vals = in_data.values
+ for day in range(win_size, in_data.size):
+ if np.isnan(m_vals[day - 1]) or np.isnan(s_vals[day - 1]):
+ results.append(0.0)
+ elif d_vals[day] < (m_vals[day - 1] - 3 * s_vals[day - 1]):
+ results.append(0.33)
+ elif (m_vals[day - 1] - 3 * s_vals[day - 1]) <= d_vals[day] <= \
+ (m_vals[day - 1] + 3 * s_vals[day - 1]):
+ results.append(0.66)
+ else:
+ results.append(1.0)
+ else:
+ results = [0.0, ]
+ try:
+ median = np.median(in_data)
+ stdev = np.std(in_data)
+ if in_data.values[-1] < (median - 3 * stdev):
+ results.append(0.33)
+ elif (median - 3 * stdev) <= in_data.values[-1] <= (
+ median + 3 * stdev):
+ results.append(0.66)
+ else:
+ results.append(1.0)
+ except TypeError:
+ results.append(None)
+ return results
+
+
+def _generate_trending_traces(in_data, period, moving_win_size=10,
+ fill_missing=True, use_first=False,
+ show_moving_median=True, name="", color=""):
+ """Generate the trending traces:
+ - samples,
+ - moving median (trending plot)
+ - outliers, regress, progress
+
+ :param in_data: Full data set.
+ :param period: Sampling period.
+ :param moving_win_size: Window size.
+ :param fill_missing: If the chosen sample is missing in the full set, its
+ nearest neighbour is used.
+ :param use_first: Use the first sample even though it is not chosen.
+ :param show_moving_median: Show moving median (trending plot).
+ :param name: Name of the plot
+ :param color: Name of the color for the plot.
+ :type in_data: OrderedDict
+ :type period: int
+ :type moving_win_size: int
+ :type fill_missing: bool
+ :type use_first: bool
+ :type show_moving_median: bool
+ :type name: str
+ :type color: str
+ :returns: Generated traces (list) and the evaluated result (float).
+ :rtype: tuple(traces, result)
+ """
+
+ if period > 1:
+ in_data = _select_data(in_data, period,
+ fill_missing=fill_missing,
+ use_first=use_first)
+
+ data_x = [key for key in in_data.keys()]
+ data_y = [val for val in in_data.values()]
+ data_pd = pd.Series(data_y, index=data_x)
+
+ t_data, outliers = find_outliers(data_pd)
+
+ results = _evaluate_results(data_pd, t_data, window=moving_win_size)
+
+ anomalies = pd.Series()
+ anomalies_res = list()
+ for idx, item in enumerate(in_data.items()):
+ item_pd = pd.Series([item[1], ], index=[item[0], ])
+ if item[0] in outliers.keys():
+ anomalies = anomalies.append(item_pd)
+ anomalies_res.append(0.0)
+ elif results[idx] in (0.33, 1.0):
+ anomalies = anomalies.append(item_pd)
+ anomalies_res.append(results[idx])
+ anomalies_res.extend([0.0, 0.33, 0.66, 1.0])
+
+ # Create traces
+ color_scale = [[0.00, "grey"],
+ [0.25, "grey"],
+ [0.25, "red"],
+ [0.50, "red"],
+ [0.50, "white"],
+ [0.75, "white"],
+ [0.75, "green"],
+ [1.00, "green"]]
+
+ trace_samples = plgo.Scatter(
+ x=data_x,
+ y=data_y,
+ mode='markers',
+ line={
+ "width": 1
+ },
+ name="{name}-thput".format(name=name),
+ marker={
+ "size": 5,
+ "color": color,
+ "symbol": "circle",
+ },
+ )
+ traces = [trace_samples, ]
+
+ trace_anomalies = plgo.Scatter(
+ x=anomalies.keys(),
+ y=anomalies.values,
+ mode='markers',
+ hoverinfo="none",
+ showlegend=False,
+ legendgroup=name,
+ name="{name}: outliers".format(name=name),
+ marker={
+ "size": 15,
+ "symbol": "circle-open",
+ "color": anomalies_res,
+ "colorscale": color_scale,
+ "showscale": True,
+
+ "colorbar": {
+ "y": 0.5,
+ "len": 0.8,
+ "title": "Results Clasification",
+ "titleside": 'right',
+ "titlefont": {
+ "size": 14
+ },
+ "tickmode": 'array',
+ "tickvals": [0.125, 0.375, 0.625, 0.875],
+ "ticktext": ["Outlier", "Regress", "Normal", "Progress"],
+ "ticks": 'outside',
+ "ticklen": 0,
+ "tickangle": -90,
+ "thickness": 10
+ }
+ }
+ )
+ traces.append(trace_anomalies)
+
+ if show_moving_median:
+ data_mean_y = pd.Series(data_y).rolling(
+ window=moving_win_size).median()
+ trace_median = plgo.Scatter(
+ x=data_x,
+ y=data_mean_y,
+ mode='lines',
+ line={
+ "shape": "spline",
+ "width": 1,
+ "color": color,
+ },
+ name='{name}-trend'.format(name=name, size=moving_win_size)
+ )
+ traces.append(trace_median)
+
+ return traces, results[-1]
+
+
+def _generate_chart(traces, layout, file_name):
+ """Generates the whole chart using pre-generated traces.
+
+ :param traces: Traces for the chart.
+ :param layout: Layout of the chart.
+ :param file_name: File name for the generated chart.
+ :type traces: list
+ :type layout: dict
+ :type file_name: str
+ """
+
+ # Create plot
+ logging.info(" Writing the file '{0}' ...".format(file_name))
+ plpl = plgo.Figure(data=traces, layout=layout)
+ ploff.plot(plpl, show_link=False, auto_open=False, filename=file_name)
+
+
+def _generate_all_charts(spec, input_data):
+ """Generate all charts specified in the specification file.
+
+ :param spec: Specification.
+ :param input_data: Full data set.
+ :type spec: Specification
+ :type input_data: InputData
+ """
+
+ results = list()
+ for chart in spec.cpta["plots"]:
+ logging.info(" Generating the chart '{0}' ...".
+ format(chart.get("title", "")))
+
+ # Transform the data
+ data = input_data.filter_data(chart, continue_on_error=True)
+ if data is None:
+ logging.error("No data.")
+ return
+
+ chart_data = dict()
+ for job in data:
+ for idx, build in job.items():
+ for test in build:
+ if chart_data.get(test["name"], None) is None:
+ chart_data[test["name"]] = OrderedDict()
+ try:
+ chart_data[test["name"]][int(idx)] = \
+ test["result"]["throughput"]
+ except (KeyError, TypeError):
+ chart_data[test["name"]][int(idx)] = None
+
+ for period in chart["periods"]:
+ # Generate traces:
+ traces = list()
+ win_size = 10 if period == 1 else 5 if period < 20 else 3
+ idx = 0
+ for test_name, test_data in chart_data.items():
+ if not test_data:
+ logging.warning("No data for the test '{0}'".
+ format(test_name))
+ continue
+ trace, result = _generate_trending_traces(
+ test_data,
+ period=period,
+ moving_win_size=win_size,
+ fill_missing=True,
+ use_first=False,
+ name='-'.join(test_name.split('-')[3:-1]),
+ color=COLORS[idx])
+ traces.extend(trace)
+ results.append(result)
+ idx += 1
+
+ # Generate the chart:
+ period_name = "Daily" if period == 1 else \
+ "Weekly" if period < 20 else "Monthly"
+ chart["layout"]["title"] = chart["title"].format(period=period_name)
+ _generate_chart(traces,
+ chart["layout"],
+ file_name="{0}-{1}-{2}{3}".format(
+ spec.cpta["output-file"],
+ chart["output-file-name"],
+ period,
+ spec.cpta["output-file-type"]))
+
+ logging.info(" Done.")
+
+ result = "PASS"
+ for item in results:
+ if item is None:
+ result = "FAIL"
+ break
+ if item == 0.66 and result == "PASS":
+ result = "PASS"
+ elif item == 0.33 or item == 0.0:
+ result = "FAIL"
+ print(results)
+ print(result)
+ if result == "FAIL":
+ return 1
+ else:
+ return 0