aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_cpta.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/generator_cpta.py')
-rw-r--r--resources/tools/presentation/generator_cpta.py633
1 files changed, 633 insertions, 0 deletions
diff --git a/resources/tools/presentation/generator_cpta.py b/resources/tools/presentation/generator_cpta.py
new file mode 100644
index 0000000000..3003557696
--- /dev/null
+++ b/resources/tools/presentation/generator_cpta.py
@@ -0,0 +1,633 @@
+# Copyright (c) 2019 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Generation of Continuous Performance Trending and Analysis.
+"""
+
+import logging
+import csv
+
+from collections import OrderedDict
+from datetime import datetime
+from copy import deepcopy
+
+import prettytable
+import plotly.offline as ploff
+import plotly.graph_objs as plgo
+import plotly.exceptions as plerr
+
+from pal_utils import archive_input_data, execute_command, classify_anomalies
+
+
+# Command to build the html format of the report
+HTML_BUILDER = u'sphinx-build -v -c conf_cpta -a ' \
+ u'-b html -E ' \
+ u'-t html ' \
+ u'-D version="{date}" ' \
+ u'{working_dir} ' \
+ u'{build_dir}/'
+
+# .css file for the html format of the report
+THEME_OVERRIDES = u"""/* override table width restrictions */
+.wy-nav-content {
+ max-width: 1200px !important;
+}
+.rst-content blockquote {
+ margin-left: 0px;
+ line-height: 18px;
+ margin-bottom: 0px;
+}
+.wy-menu-vertical a {
+ display: inline-block;
+ line-height: 18px;
+ padding: 0 2em;
+ display: block;
+ position: relative;
+ font-size: 90%;
+ color: #d9d9d9
+}
+.wy-menu-vertical li.current a {
+ color: gray;
+ border-right: solid 1px #c9c9c9;
+ padding: 0 3em;
+}
+.wy-menu-vertical li.toctree-l2.current > a {
+ background: #c9c9c9;
+ padding: 0 3em;
+}
+.wy-menu-vertical li.toctree-l2.current li.toctree-l3 > a {
+ display: block;
+ background: #c9c9c9;
+ padding: 0 4em;
+}
+.wy-menu-vertical li.toctree-l3.current li.toctree-l4 > a {
+ display: block;
+ background: #bdbdbd;
+ padding: 0 5em;
+}
+.wy-menu-vertical li.on a, .wy-menu-vertical li.current > a {
+ color: #404040;
+ padding: 0 2em;
+ font-weight: bold;
+ position: relative;
+ background: #fcfcfc;
+ border: none;
+ border-top-width: medium;
+ border-bottom-width: medium;
+ border-top-style: none;
+ border-bottom-style: none;
+ border-top-color: currentcolor;
+ border-bottom-color: currentcolor;
+ padding-left: 2em -4px;
+}
+"""
+
+COLORS = [
+ u"SkyBlue", u"Olive", u"Purple", u"Coral", u"Indigo", u"Pink",
+ u"Chocolate", u"Brown", u"Magenta", u"Cyan", u"Orange", u"Black",
+ u"Violet", u"Blue", u"Yellow", u"BurlyWood", u"CadetBlue", u"Crimson",
+ u"DarkBlue", u"DarkCyan", u"DarkGreen", u"Green", u"GoldenRod",
+ u"LightGreen", u"LightSeaGreen", u"LightSkyBlue", u"Maroon",
+ u"MediumSeaGreen", u"SeaGreen", u"LightSlateGrey",
+ u"SkyBlue", u"Olive", u"Purple", u"Coral", u"Indigo", u"Pink",
+ u"Chocolate", u"Brown", u"Magenta", u"Cyan", u"Orange", u"Black",
+ u"Violet", u"Blue", u"Yellow", u"BurlyWood", u"CadetBlue", u"Crimson",
+ u"DarkBlue", u"DarkCyan", u"DarkGreen", u"Green", u"GoldenRod",
+ u"LightGreen", u"LightSeaGreen", u"LightSkyBlue", u"Maroon",
+ u"MediumSeaGreen", u"SeaGreen", u"LightSlateGrey"
+]
+
+
+def generate_cpta(spec, data):
+ """Generate all formats and versions of the Continuous Performance Trending
+ and Analysis.
+
+ :param spec: Specification read from the specification file.
+ :param data: Full data set.
+ :type spec: Specification
+ :type data: InputData
+ """
+
+ logging.info(u"Generating the Continuous Performance Trending and Analysis "
+ u"...")
+
+ ret_code = _generate_all_charts(spec, data)
+
+ cmd = HTML_BUILDER.format(
+ date=datetime.utcnow().strftime(u'%Y-%m-%d %H:%M UTC'),
+ working_dir=spec.environment[u'paths'][u'DIR[WORKING,SRC]'],
+ build_dir=spec.environment[u'paths'][u'DIR[BUILD,HTML]'])
+ execute_command(cmd)
+
+ with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE]'], u'w') as \
+ css_file:
+ css_file.write(THEME_OVERRIDES)
+
+ with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE2]'], u'w') as \
+ css_file:
+ css_file.write(THEME_OVERRIDES)
+
+ if spec.configuration.get(u"archive-inputs", True):
+ archive_input_data(spec)
+
+ logging.info(u"Done.")
+
+ return ret_code
+
+
+def _generate_trending_traces(in_data, job_name, build_info,
+ show_trend_line=True, name=u"", color=u""):
+ """Generate the trending traces:
+ - samples,
+ - outliers, regress, progress
+ - average of normal samples (trending line)
+
+ :param in_data: Full data set.
+ :param job_name: The name of job which generated the data.
+ :param build_info: Information about the builds.
+ :param show_trend_line: Show moving median (trending plot).
+ :param name: Name of the plot
+ :param color: Name of the color for the plot.
+ :type in_data: OrderedDict
+ :type job_name: str
+ :type build_info: dict
+ :type show_trend_line: bool
+ :type name: str
+ :type color: str
+ :returns: Generated traces (list) and the evaluated result.
+ :rtype: tuple(traces, result)
+ """
+
+ data_x = list(in_data.keys())
+ data_y = list(in_data.values())
+
+ hover_text = list()
+ xaxis = list()
+ for idx in data_x:
+ date = build_info[job_name][str(idx)][0]
+ hover_str = (u"date: {date}<br>"
+ u"value: {value:,}<br>"
+ u"{sut}-ref: {build}<br>"
+ u"csit-ref: mrr-{period}-build-{build_nr}<br>"
+ u"testbed: {testbed}")
+ if u"dpdk" in job_name:
+ hover_text.append(hover_str.format(
+ date=date,
+ value=int(in_data[idx]),
+ sut=u"dpdk",
+ build=build_info[job_name][str(idx)][1].rsplit(u'~', 1)[0],
+ period=u"weekly",
+ build_nr=idx,
+ testbed=build_info[job_name][str(idx)][2]))
+ elif u"vpp" in job_name:
+ hover_text.append(hover_str.format(
+ date=date,
+ value=int(in_data[idx]),
+ sut=u"vpp",
+ build=build_info[job_name][str(idx)][1].rsplit(u'~', 1)[0],
+ period=u"daily",
+ build_nr=idx,
+ testbed=build_info[job_name][str(idx)][2]))
+
+ xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
+ int(date[9:11]), int(date[12:])))
+
+ data_pd = OrderedDict()
+ for key, value in zip(xaxis, data_y):
+ data_pd[key] = value
+
+ anomaly_classification, avgs = classify_anomalies(data_pd)
+
+ anomalies = OrderedDict()
+ anomalies_colors = list()
+ anomalies_avgs = list()
+ anomaly_color = {
+ u"regression": 0.0,
+ u"normal": 0.5,
+ u"progression": 1.0
+ }
+ if anomaly_classification:
+ for idx, (key, value) in enumerate(data_pd.items()):
+ if anomaly_classification[idx] in \
+ (u"outlier", u"regression", u"progression"):
+ anomalies[key] = value
+ anomalies_colors.append(
+ anomaly_color[anomaly_classification[idx]])
+ anomalies_avgs.append(avgs[idx])
+ anomalies_colors.extend([0.0, 0.5, 1.0])
+
+ # Create traces
+
+ trace_samples = plgo.Scatter(
+ x=xaxis,
+ y=data_y,
+ mode=u"markers",
+ line={
+ u"width": 1
+ },
+ showlegend=True,
+ legendgroup=name,
+ name=f"{name}",
+ marker={
+ u"size": 5,
+ u"color": color,
+ u"symbol": u"circle",
+ },
+ text=hover_text,
+ hoverinfo=u"text"
+ )
+ traces = [trace_samples, ]
+
+ if show_trend_line:
+ trace_trend = plgo.Scatter(
+ x=xaxis,
+ y=avgs,
+ mode=u"lines",
+ line={
+ u"shape": u"linear",
+ u"width": 1,
+ u"color": color,
+ },
+ showlegend=False,
+ legendgroup=name,
+ name=f"{name}",
+ text=[f"trend: {int(avg):,}" for avg in avgs],
+ hoverinfo=u"text+name"
+ )
+ traces.append(trace_trend)
+
+ trace_anomalies = plgo.Scatter(
+ x=list(anomalies.keys()),
+ y=anomalies_avgs,
+ mode=u"markers",
+ hoverinfo=u"none",
+ showlegend=False,
+ legendgroup=name,
+ name=f"{name}-anomalies",
+ marker={
+ u"size": 15,
+ u"symbol": u"circle-open",
+ u"color": anomalies_colors,
+ u"colorscale": [
+ [0.00, u"red"],
+ [0.33, u"red"],
+ [0.33, u"white"],
+ [0.66, u"white"],
+ [0.66, u"green"],
+ [1.00, u"green"]
+ ],
+ u"showscale": True,
+ u"line": {
+ u"width": 2
+ },
+ u"colorbar": {
+ u"y": 0.5,
+ u"len": 0.8,
+ u"title": u"Circles Marking Data Classification",
+ u"titleside": u"right",
+ u"titlefont": {
+ u"size": 14
+ },
+ u"tickmode": u"array",
+ u"tickvals": [0.167, 0.500, 0.833],
+ u"ticktext": [u"Regression", u"Normal", u"Progression"],
+ u"ticks": u"",
+ u"ticklen": 0,
+ u"tickangle": -90,
+ u"thickness": 10
+ }
+ }
+ )
+ traces.append(trace_anomalies)
+
+ if anomaly_classification:
+ return traces, anomaly_classification[-1]
+
+ return traces, None
+
+
+def _generate_all_charts(spec, input_data):
+ """Generate all charts specified in the specification file.
+
+ :param spec: Specification.
+ :param input_data: Full data set.
+ :type spec: Specification
+ :type input_data: InputData
+ """
+
+ def _generate_chart(graph):
+ """Generates the chart.
+
+ :param graph: The graph to be generated
+ :type graph: dict
+ :returns: Dictionary with the job name, csv table with results and
+ list of tests classification results.
+ :rtype: dict
+ """
+
+ logs = list()
+
+ logs.append(
+ (u"INFO", f" Generating the chart {graph.get(u'title', u'')} ...")
+ )
+
+ job_name = list(graph[u"data"].keys())[0]
+
+ csv_tbl = list()
+ res = dict()
+
+ # Transform the data
+ logs.append(
+ (u"INFO",
+ f" Creating the data set for the {graph.get(u'type', u'')} "
+ f"{graph.get(u'title', u'')}."
+ )
+ )
+ data = input_data.filter_data(graph, continue_on_error=True)
+ if data is None:
+ logging.error(u"No data.")
+ return dict()
+
+ chart_data = dict()
+ chart_tags = dict()
+ for job, job_data in data.items():
+ if job != job_name:
+ continue
+ for index, bld in job_data.items():
+ for test_name, test in bld.items():
+ if chart_data.get(test_name, None) is None:
+ chart_data[test_name] = OrderedDict()
+ try:
+ chart_data[test_name][int(index)] = \
+ test[u"result"][u"receive-rate"]
+ chart_tags[test_name] = test.get(u"tags", None)
+ except (KeyError, TypeError):
+ pass
+
+ # Add items to the csv table:
+ for tst_name, tst_data in chart_data.items():
+ tst_lst = list()
+ for bld in builds_dict[job_name]:
+ itm = tst_data.get(int(bld), u'')
+ # CSIT-1180: Itm will be list, compute stats.
+ tst_lst.append(str(itm))
+ csv_tbl.append(f"{tst_name}," + u",".join(tst_lst) + u'\n')
+
+ # Generate traces:
+ traces = list()
+ index = 0
+ groups = graph.get(u"groups", None)
+ visibility = list()
+
+ if groups:
+ for group in groups:
+ visible = list()
+ for tag in group:
+ for tst_name, test_data in chart_data.items():
+ if not test_data:
+ logs.append(
+ (u"WARNING", f"No data for the test {tst_name}")
+ )
+ continue
+ if tag not in chart_tags[tst_name]:
+ continue
+ message = f"index: {index}, test: {tst_name}"
+ try:
+ trace, rslt = _generate_trending_traces(
+ test_data,
+ job_name=job_name,
+ build_info=build_info,
+ name=u'-'.join(tst_name.split(u'.')[-1].
+ split(u'-')[2:-1]),
+ color=COLORS[index])
+ except IndexError:
+ logs.append(
+ (u"ERROR", f"Out of colors: {message}")
+ )
+ logging.error(f"Out of colors: {message}")
+ index += 1
+ continue
+ traces.extend(trace)
+ visible.extend([True for _ in range(len(trace))])
+ res[tst_name] = rslt
+ index += 1
+ break
+ visibility.append(visible)
+ else:
+ for tst_name, test_data in chart_data.items():
+ if not test_data:
+ logs.append(
+ (u"WARNING", f"No data for the test {tst_name}")
+ )
+ continue
+ message = f"index: {index}, test: {tst_name}"
+ try:
+ trace, rslt = _generate_trending_traces(
+ test_data,
+ job_name=job_name,
+ build_info=build_info,
+ name=u'-'.join(
+ tst_name.split(u'.')[-1].split(u'-')[2:-1]),
+ color=COLORS[index])
+ except IndexError:
+ logs.append((u"ERROR", f"Out of colors: {message}"))
+ logging.error(f"Out of colors: {message}")
+ index += 1
+ continue
+ traces.extend(trace)
+ res[tst_name] = rslt
+ index += 1
+
+ if traces:
+ # Generate the chart:
+ try:
+ layout = deepcopy(graph[u"layout"])
+ except KeyError as err:
+ logging.error(u"Finished with error: No layout defined")
+ logging.error(repr(err))
+ return dict()
+ if groups:
+ show = list()
+ for i in range(len(visibility)):
+ visible = list()
+ for vis_idx, _ in enumerate(visibility):
+ for _ in range(len(visibility[vis_idx])):
+ visible.append(i == vis_idx)
+ show.append(visible)
+
+ buttons = list()
+ buttons.append(dict(
+ label=u"All",
+ method=u"update",
+ args=[{u"visible": [True for _ in range(len(show[0]))]}, ]
+ ))
+ for i in range(len(groups)):
+ try:
+ label = graph[u"group-names"][i]
+ except (IndexError, KeyError):
+ label = f"Group {i + 1}"
+ buttons.append(dict(
+ label=label,
+ method=u"update",
+ args=[{u"visible": show[i]}, ]
+ ))
+
+ layout[u"updatemenus"] = list([
+ dict(
+ active=0,
+ type=u"dropdown",
+ direction=u"down",
+ xanchor=u"left",
+ yanchor=u"bottom",
+ x=-0.12,
+ y=1.0,
+ buttons=buttons
+ )
+ ])
+
+ name_file = (
+ f"{spec.cpta[u'output-file']}-{graph[u'output-file-name']}"
+ f"{spec.cpta[u'output-file-type']}")
+
+ logs.append((u"INFO", f" Writing the file {name_file} ..."))
+ plpl = plgo.Figure(data=traces, layout=layout)
+ try:
+ ploff.plot(plpl, show_link=False, auto_open=False,
+ filename=name_file)
+ except plerr.PlotlyEmptyDataError:
+ logs.append((u"WARNING", u"No data for the plot. Skipped."))
+
+ for level, line in logs:
+ if level == u"INFO":
+ logging.info(line)
+ elif level == u"ERROR":
+ logging.error(line)
+ elif level == u"DEBUG":
+ logging.debug(line)
+ elif level == u"CRITICAL":
+ logging.critical(line)
+ elif level == u"WARNING":
+ logging.warning(line)
+
+ return {u"job_name": job_name, u"csv_table": csv_tbl, u"results": res}
+
+ builds_dict = dict()
+ for job in spec.input[u"builds"].keys():
+ if builds_dict.get(job, None) is None:
+ builds_dict[job] = list()
+ for build in spec.input[u"builds"][job]:
+ status = build[u"status"]
+ if status not in (u"failed", u"not found", u"removed"):
+ builds_dict[job].append(str(build[u"build"]))
+
+ # Create "build ID": "date" dict:
+ build_info = dict()
+ tb_tbl = spec.environment.get(u"testbeds", None)
+ for job_name, job_data in builds_dict.items():
+ if build_info.get(job_name, None) is None:
+ build_info[job_name] = OrderedDict()
+ for build in job_data:
+ testbed = u""
+ tb_ip = input_data.metadata(job_name, build).get(u"testbed", u"")
+ if tb_ip and tb_tbl:
+ testbed = tb_tbl.get(tb_ip, u"")
+ build_info[job_name][build] = (
+ input_data.metadata(job_name, build).get(u"generated", u""),
+ input_data.metadata(job_name, build).get(u"version", u""),
+ testbed
+ )
+
+ anomaly_classifications = dict()
+
+ # Create the header:
+ csv_tables = dict()
+ for job_name in builds_dict:
+ if csv_tables.get(job_name, None) is None:
+ csv_tables[job_name] = list()
+ header = u"Build Number:," + u",".join(builds_dict[job_name]) + u'\n'
+ csv_tables[job_name].append(header)
+ build_dates = [x[0] for x in build_info[job_name].values()]
+ header = u"Build Date:," + u",".join(build_dates) + u'\n'
+ csv_tables[job_name].append(header)
+ versions = [x[1] for x in build_info[job_name].values()]
+ header = u"Version:," + u",".join(versions) + u'\n'
+ csv_tables[job_name].append(header)
+
+ for chart in spec.cpta[u"plots"]:
+ result = _generate_chart(chart)
+ if not result:
+ continue
+
+ csv_tables[result[u"job_name"]].extend(result[u"csv_table"])
+
+ if anomaly_classifications.get(result[u"job_name"], None) is None:
+ anomaly_classifications[result[u"job_name"]] = dict()
+ anomaly_classifications[result[u"job_name"]].update(result[u"results"])
+
+ # Write the tables:
+ for job_name, csv_table in csv_tables.items():
+ file_name = spec.cpta[u"output-file"] + u"-" + job_name + u"-trending"
+ with open(f"{file_name}.csv", u"w") as file_handler:
+ file_handler.writelines(csv_table)
+
+ txt_table = None
+ with open(f"{file_name}.csv", u"rt") as csv_file:
+ csv_content = csv.reader(csv_file, delimiter=u',', quotechar=u'"')
+ line_nr = 0
+ for row in csv_content:
+ if txt_table is None:
+ txt_table = prettytable.PrettyTable(row)
+ else:
+ if line_nr > 1:
+ for idx, item in enumerate(row):
+ try:
+ row[idx] = str(round(float(item) / 1000000, 2))
+ except ValueError:
+ pass
+ try:
+ txt_table.add_row(row)
+ # PrettyTable raises Exception
+ except Exception as err:
+ logging.warning(
+ f"Error occurred while generating TXT table:\n{err}"
+ )
+ line_nr += 1
+ txt_table.align[u"Build Number:"] = u"l"
+ with open(f"{file_name}.txt", u"w") as txt_file:
+ txt_file.write(str(txt_table))
+
+ # Evaluate result:
+ if anomaly_classifications:
+ result = u"PASS"
+ for job_name, job_data in anomaly_classifications.items():
+ file_name = \
+ f"{spec.cpta[u'output-file']}-regressions-{job_name}.txt"
+ with open(file_name, u'w') as txt_file:
+ for test_name, classification in job_data.items():
+ if classification == u"regression":
+ txt_file.write(test_name + u'\n')
+ if classification in (u"regression", u"outlier"):
+ result = u"FAIL"
+ file_name = \
+ f"{spec.cpta[u'output-file']}-progressions-{job_name}.txt"
+ with open(file_name, u'w') as txt_file:
+ for test_name, classification in job_data.items():
+ if classification == u"progression":
+ txt_file.write(test_name + u'\n')
+ else:
+ result = u"FAIL"
+
+ logging.info(f"Partial results: {anomaly_classifications}")
+ logging.info(f"Result: {result}")
+
+ return result