aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_cpta.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/generator_cpta.py')
-rw-r--r--resources/tools/presentation/generator_cpta.py185
1 files changed, 138 insertions, 47 deletions
diff --git a/resources/tools/presentation/generator_cpta.py b/resources/tools/presentation/generator_cpta.py
index 1a2dbaa124..fafa8638a4 100644
--- a/resources/tools/presentation/generator_cpta.py
+++ b/resources/tools/presentation/generator_cpta.py
@@ -1,4 +1,4 @@
-# Copyright (c) 2021 Cisco and/or its affiliates.
+# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
@@ -838,7 +838,44 @@ def _generate_all_charts(spec, input_data):
# Evaluate result:
if anomaly_classifications:
+ test_reg_lst = []
+ nic_reg_lst = []
+ frmsize_reg_lst = []
+ trend_reg_lst = []
+ number_reg_lst = []
+ ltc_reg_lst = []
+ test_prog_lst = []
+ nic_prog_lst = []
+ frmsize_prog_lst = []
+ trend_prog_lst = []
+ number_prog_lst = []
+ ltc_prog_lst = []
result = u"PASS"
+
+ class MaxLens():
+ """Class to store the max lengths of strings displayed in
+ regressions and progressions.
+ """
+
+ def __init__(self, tst, nic, frmsize, trend, run, ltc):
+ """Initialisation.
+
+ :param tst: Name of the test.
+ :param nic: NIC used in the test.
+ :param frmsize: Frame size used in the test.
+ :param trend: Trend Change.
+ :param run: Number of runs for last trend.
+ :param ltc: Regression or Progression
+ """
+ self.tst = tst
+ self.nic = nic
+ self.frmsize = frmsize
+ self.trend = trend
+ self.run = run
+ self.ltc = ltc
+
+ max_len = MaxLens(0, 0, 0, 0, 0, 0)
+
for job_name, job_data in anomaly_classifications.items():
data = []
tb = u"-".join(job_name.split(u"-")[-2:])
@@ -848,57 +885,111 @@ def _generate_all_charts(spec, input_data):
file_to_read = f"{spec.cpta[u'output-file']}/{file}"
with open(f"{file_to_read}", u"rt") as input:
data = data + input.readlines()
- file_name = \
- f"{spec.cpta[u'output-file']}/regressions-{job_name}.txt"
- with open(file_name, u'w') as txt_file:
- for test_name, classification in job_data.items():
- if classification == u"regression":
- if u"2n" in test_name:
- test_name = test_name.split("-", 2)
- tst = test_name[2].split(".")[-1]
- nic = test_name[1]
- tst_name = f"{nic}-{tst}"
- else:
- test_name = test_name.split("-", 1)
- tst = test_name[1].split(".")[-1]
- nic = test_name[0].split(".")[-1]
- tst_name = f"{nic}-{tst}"
-
- for line in data:
- if tst_name in line:
- line = line.replace(" ", "")
- trend = line.split("|")[2]
- number = line.split("|")[3]
- ltc = line.split("|")[4]
- txt_file.write(f"{tst_name} [ {trend}M | "
- f"#{number} | {ltc}% ]\n")
+
+ for test_name, classification in job_data.items():
+ if classification != u"normal":
+ if u"2n" in test_name:
+ test_name = test_name.split("-", 2)
+ tst = test_name[2].split(".")[-1]
+ nic = test_name[1]
+ else:
+ test_name = test_name.split("-", 1)
+ tst = test_name[1].split(".")[-1]
+ nic = test_name[0].split(".")[-1]
+ frmsize = tst.split("-")[0].upper()
+ tst = u"-".join(tst.split("-")[1:])
+ tst_name = f"{nic}-{frmsize}-{tst}"
+ if len(tst) > max_len.tst:
+ max_len.tst = len(tst)
+ if len(nic) > max_len.nic:
+ max_len.nic = len(nic)
+ if len(frmsize) > max_len.frmsize:
+ max_len.frmsize = len(frmsize)
+
+ for line in data:
+ if tst_name in line:
+ line = line.replace(" ", "")
+ trend = line.split("|")[2]
+ if len(str(trend)) > max_len.trend:
+ max_len.trend = len(str(trend))
+ number = line.split("|")[3]
+ if len(str(number)) > max_len.run:
+ max_len.run = len(str(number))
+ ltc = line.split("|")[4]
+ if len(str(ltc)) > max_len.ltc:
+ max_len.ltc = len(str(ltc))
+ if classification == u'regression':
+ test_reg_lst.append(tst)
+ nic_reg_lst.append(nic)
+ frmsize_reg_lst.append(frmsize)
+ trend_reg_lst.append(trend)
+ number_reg_lst.append(number)
+ ltc_reg_lst.append(ltc)
+ elif classification == u'progression':
+ test_prog_lst.append(tst)
+ nic_prog_lst.append(nic)
+ frmsize_prog_lst.append(frmsize)
+ trend_prog_lst.append(trend)
+ number_prog_lst.append(number)
+ ltc_prog_lst.append(ltc)
if classification in (u"regression", u"outlier"):
result = u"FAIL"
+
+ text = u""
+ for idx in range(len(test_reg_lst)):
+ text += (
+ f"{test_reg_lst[idx]}"
+ f"{u' ' * (max_len.tst - len(test_reg_lst[idx]))} "
+ f"{nic_reg_lst[idx]}"
+ f"{u' ' * (max_len.nic - len(nic_reg_lst[idx]))} "
+ f"{frmsize_reg_lst[idx]}"
+ f"{u' ' * (max_len.frmsize - len(frmsize_reg_lst[idx]))} "
+ f"{trend_reg_lst[idx]}"
+ f"{u' ' * (max_len.trend - len(str(trend_reg_lst[idx])))} "
+ f"{number_reg_lst[idx]}"
+ f"{u' ' * (max_len.run - len(str(number_reg_lst[idx])))} "
+ f"{ltc_reg_lst[idx]}"
+ f"{u' ' * (max_len.ltc - len(str(ltc_reg_lst[idx])))} "
+ f"\n"
+ )
+
+ file_name = \
+ f"{spec.cpta[u'output-file']}/regressions-{job_name}.txt"
+
+ try:
+ with open(f"{file_name}", u'w') as txt_file:
+ txt_file.write(text)
+ except IOError:
+ logging.error(
+ f"Not possible to write the file {file_name}.")
+
+ text = u""
+ for idx in range(len(test_prog_lst)):
+ text += (
+ f"{test_prog_lst[idx]}"
+ f"{u' ' * (max_len.tst - len(test_prog_lst[idx]))} "
+ f"{nic_prog_lst[idx]}"
+ f"{u' ' * (max_len.nic - len(nic_prog_lst[idx]))} "
+ f"{frmsize_prog_lst[idx]}"
+ f"{u' ' * (max_len.frmsize - len(frmsize_prog_lst[idx]))} "
+ f"{trend_prog_lst[idx]}"
+ f"{u' ' * (max_len.trend -len(str(trend_prog_lst[idx])))} "
+ f"{number_prog_lst[idx]}"
+ f"{u' ' * (max_len.run - len(str(number_prog_lst[idx])))} "
+ f"{ltc_prog_lst[idx]}"
+ f"{u' ' * (max_len.ltc - len(str(ltc_prog_lst[idx])))} "
+ f"\n"
+ )
+
file_name = \
f"{spec.cpta[u'output-file']}/progressions-{job_name}.txt"
- with open(file_name, u'w') as txt_file:
- for test_name, classification in job_data.items():
- if classification == u"progression":
- if u"2n" in test_name:
- test_name = test_name.split("-", 2)
- tst = test_name[2].split(".")[-1]
- nic = test_name[1]
- tst_name = f"{nic}-{tst}"
- else:
- test_name = test_name.split("-", 1)
- tst = test_name[1].split(".")[-1]
- nic = test_name[0].split(".")[-1]
- tst_name = f"{nic}-{tst}"
-
- for line in data:
- if tst_name in line:
- line = line.replace(" ", "")
- trend = line.split("|")[2]
- number = line.split("|")[3]
- ltc = line.split("|")[4]
- txt_file.write(f"{tst_name} [ {trend}M | "
- f"#{number} | {ltc}% ]\n")
+ try:
+ with open(f"{file_name}", u'w') as txt_file:
+ txt_file.write(text)
+ except IOError:
+ logging.error(f"Not possible to write the file {file_name}.")
+
else:
result = u"FAIL"