diff options
Diffstat (limited to 'resources/tools/presentation/generator_plots.py')
-rw-r--r-- | resources/tools/presentation/generator_plots.py | 1868 |
1 files changed, 0 insertions, 1868 deletions
diff --git a/resources/tools/presentation/generator_plots.py b/resources/tools/presentation/generator_plots.py deleted file mode 100644 index cc9d880398..0000000000 --- a/resources/tools/presentation/generator_plots.py +++ /dev/null @@ -1,1868 +0,0 @@ -# Copyright (c) 2023 Cisco and/or its affiliates. -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at: -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Algorithms to generate plots. -""" - - -import re -import logging - -from collections import OrderedDict -from datetime import datetime -from copy import deepcopy -from math import log - -import hdrh.histogram -import hdrh.codec -import pandas as pd -import plotly.offline as ploff -import plotly.graph_objs as plgo -import plotly.exceptions as plerr - -from plotly.exceptions import PlotlyError - -from pal_utils import mean, stdev - - -COLORS = ( - u"#1A1110", - u"#DA2647", - u"#214FC6", - u"#01786F", - u"#BD8260", - u"#FFD12A", - u"#A6E7FF", - u"#738276", - u"#C95A49", - u"#FC5A8D", - u"#CEC8EF", - u"#391285", - u"#6F2DA8", - u"#FF878D", - u"#45A27D", - u"#FFD0B9", - u"#FD5240", - u"#DB91EF", - u"#44D7A8", - u"#4F86F7", - u"#84DE02", - u"#FFCFF1", - u"#614051" -) - -REGEX_NIC = re.compile(r'(\d*ge\dp\d\D*\d*[a-z]*)-') - -# This value depends on latency stream rate (9001 pps) and duration (5s). -# Keep it slightly higher to ensure rounding errors to not remove tick mark. -PERCENTILE_MAX = 99.999501 - - -def generate_plots(spec, data): - """Generate all plots specified in the specification file. - - :param spec: Specification read from the specification file. - :param data: Data to process. - :type spec: Specification - :type data: InputData - """ - - generator = { - u"plot_nf_reconf_box_name": plot_nf_reconf_box_name, - u"plot_perf_box_name": plot_perf_box_name, - u"plot_tsa_name": plot_tsa_name, - u"plot_http_server_perf_box": plot_http_server_perf_box, - u"plot_nf_heatmap": plot_nf_heatmap, - u"plot_hdrh_lat_by_percentile": plot_hdrh_lat_by_percentile, - u"plot_hdrh_lat_by_percentile_x_log": plot_hdrh_lat_by_percentile_x_log, - u"plot_mrr_box_name": plot_mrr_box_name, - u"plot_ndrpdr_box_name": plot_ndrpdr_box_name, - u"plot_statistics": plot_statistics - } - - logging.info(u"Generating the plots ...") - for index, plot in enumerate(spec.plots): - try: - logging.info(f" Plot nr {index + 1}: {plot.get(u'title', u'')}") - plot[u"limits"] = spec.environment[u"limits"] - generator[plot[u"algorithm"]](plot, data) - logging.info(u" Done.") - except NameError as err: - logging.error( - f"Probably algorithm {plot[u'algorithm']} is not defined: " - f"{repr(err)}" - ) - logging.info(u"Done.") - - -def plot_statistics(plot, input_data): - """Generate the plot(s) with algorithm: plot_statistics - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - data_x = list() - data_y_pass = list() - data_y_fail = list() - data_y_duration = list() - hover_text = list() - hover_str = ( - u"date: {date}<br>" - u"passed: {passed}<br>" - u"failed: {failed}<br>" - u"duration: {duration}<br>" - u"{sut}-ref: {build}<br>" - u"csit-ref: {test}-{period}-build-{build_nr}<br>" - u"testbed: {testbed}" - ) - for job, builds in plot[u"data"].items(): - for build_nr in builds: - try: - meta = input_data.metadata(job, str(build_nr)) - generated = meta[u"generated"] - date = datetime( - int(generated[0:4]), - int(generated[4:6]), - int(generated[6:8]), - int(generated[9:11]), - int(generated[12:]) - ) - d_y_pass = meta[u"tests_passed"] - d_y_fail = meta[u"tests_failed"] - minutes = meta[u"elapsedtime"] // 60000 - duration = f"{(minutes // 60):02d}:{(minutes % 60):02d}" - version = meta.get(u"version", u"") - except (KeyError, IndexError, ValueError, AttributeError): - continue - data_x.append(date) - data_y_pass.append(d_y_pass) - data_y_fail.append(d_y_fail) - data_y_duration.append(minutes) - if u"vpp" in job: - sut = u"vpp" - elif u"dpdk" in job: - sut = u"dpdk" - elif u"trex" in job: - sut = u"trex" - else: - sut = u"" - hover_text.append(hover_str.format( - date=date, - passed=d_y_pass, - failed=d_y_fail, - duration=duration, - sut=sut, - build=version, - test=u"mrr" if u"mrr" in job else u"ndrpdr", - period=u"daily" if u"daily" in job else u"weekly", - build_nr=build_nr, - testbed=meta.get(u"testbed", u"") - )) - - traces = [ - plgo.Bar( - x=data_x, - y=data_y_pass, - name=u"Passed", - text=hover_text, - hoverinfo=u"text" - ), - plgo.Bar( - x=data_x, - y=data_y_fail, - name=u"Failed", - text=hover_text, - hoverinfo=u"text"), - plgo.Scatter( - x=data_x, - y=data_y_duration, - name=u"Duration", - yaxis=u"y2", - text=hover_text, - hoverinfo=u"text" - ) - ] - - name_file = f"{plot[u'output-file']}.html" - - logging.info(f" Writing the file {name_file}") - plpl = plgo.Figure(data=traces, layout=plot[u"layout"]) - tickvals = [0, (max(data_y_duration) // 60) * 60] - step = tickvals[1] / 5 - for i in range(5): - tickvals.append(int(tickvals[0] + step * (i + 1))) - plpl.update_layout( - yaxis2=dict( - title=u"Duration [hh:mm]", - anchor=u"x", - overlaying=u"y", - side=u"right", - rangemode="tozero", - tickmode=u"array", - tickvals=tickvals, - ticktext=[f"{(val // 60):02d}:{(val % 60):02d}" for val in tickvals] - ) - ) - plpl.update_layout(barmode=u"stack") - try: - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=name_file - ) - except plerr.PlotlyEmptyDataError: - logging.warning(u"No data for the plot. Skipped.") - - -def plot_hdrh_lat_by_percentile(plot, input_data): - """Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating the data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - if plot.get(u"include", None): - data = input_data.filter_tests_by_name( - plot, - params=[u"name", u"latency", u"parent", u"tags", u"type"] - )[0][0] - elif plot.get(u"filter", None): - data = input_data.filter_data( - plot, - params=[u"name", u"latency", u"parent", u"tags", u"type"], - continue_on_error=True - )[0][0] - else: - job = list(plot[u"data"].keys())[0] - build = str(plot[u"data"][job][0]) - data = input_data.tests(job, build) - - if data is None or len(data) == 0: - logging.error(u"No data.") - return - - desc = { - u"LAT0": u"No-load.", - u"PDR10": u"Low-load, 10% PDR.", - u"PDR50": u"Mid-load, 50% PDR.", - u"PDR90": u"High-load, 90% PDR.", - u"PDR": u"Full-load, 100% PDR.", - u"NDR10": u"Low-load, 10% NDR.", - u"NDR50": u"Mid-load, 50% NDR.", - u"NDR90": u"High-load, 90% NDR.", - u"NDR": u"Full-load, 100% NDR." - } - - graphs = [ - u"LAT0", - u"PDR10", - u"PDR50", - u"PDR90" - ] - - file_links = plot.get(u"output-file-links", None) - target_links = plot.get(u"target-links", None) - - for test in data: - try: - if test[u"type"] not in (u"NDRPDR",): - logging.warning(f"Invalid test type: {test[u'type']}") - continue - name = re.sub(REGEX_NIC, u"", test[u"parent"]. - replace(u'-ndrpdr', u'').replace(u'2n1l-', u'')) - try: - nic = re.search(REGEX_NIC, test[u"parent"]).group(1) - except (IndexError, AttributeError, KeyError, ValueError): - nic = u"" - name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'') - - logging.info(f" Generating the graph: {name_link}") - - fig = plgo.Figure() - layout = deepcopy(plot[u"layout"]) - - for color, graph in enumerate(graphs): - for idx, direction in enumerate((u"direction1", u"direction2")): - previous_x = 0.0 - xaxis = list() - yaxis = list() - hovertext = list() - try: - decoded = hdrh.histogram.HdrHistogram.decode( - test[u"latency"][graph][direction][u"hdrh"] - ) - except hdrh.codec.HdrLengthException: - logging.warning( - f"No data for direction {(u'W-E', u'E-W')[idx % 2]}" - ) - continue - - for item in decoded.get_recorded_iterator(): - percentile = item.percentile_level_iterated_to - xaxis.append(previous_x) - yaxis.append(item.value_iterated_to) - hovertext.append( - f"<b>{desc[graph]}</b><br>" - f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>" - f"Percentile: " - f"{previous_x:.5f}-{percentile:.5f}%<br>" - f"Latency: {item.value_iterated_to}uSec" - ) - xaxis.append(percentile) - yaxis.append(item.value_iterated_to) - hovertext.append( - f"<b>{desc[graph]}</b><br>" - f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>" - f"Percentile: " - f"{previous_x:.5f}-{percentile:.5f}%<br>" - f"Latency: {item.value_iterated_to}uSec" - ) - previous_x = percentile - fig.add_trace( - plgo.Scatter( - x=xaxis, - y=yaxis, - name=desc[graph], - mode=u"lines", - legendgroup=desc[graph], - showlegend=bool(idx), - line=dict( - color=COLORS[color], - dash=u"solid", - width=1 if idx % 2 else 2 - ), - hovertext=hovertext, - hoverinfo=u"text" - ) - ) - - layout[u"title"][u"text"] = f"<b>Latency:</b> {name}" - fig.update_layout(layout) - - # Create plot - file_name = f"{plot[u'output-file']}-{name_link}.html" - logging.info(f" Writing file {file_name}") - - try: - # Export Plot - ploff.plot(fig, show_link=False, auto_open=False, - filename=file_name) - # Add link to the file: - if file_links and target_links: - with open(file_links, u"a") as file_handler: - file_handler.write( - f"- `{name_link} " - f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n" - ) - except FileNotFoundError as err: - logging.error( - f"Not possible to write the link to the file " - f"{file_links}\n{err}" - ) - except PlotlyError as err: - logging.error(f" Finished with error: {repr(err)}") - - except hdrh.codec.HdrLengthException as err: - logging.warning(repr(err)) - continue - - except (ValueError, KeyError) as err: - logging.warning(repr(err)) - continue - - -def plot_hdrh_lat_by_percentile_x_log(plot, input_data): - """Generate the plot(s) with algorithm: plot_hdrh_lat_by_percentile_x_log - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating the data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - if plot.get(u"include", None): - data = input_data.filter_tests_by_name( - plot, - params=[u"name", u"latency", u"parent", u"tags", u"type"] - )[0][0] - elif plot.get(u"filter", None): - data = input_data.filter_data( - plot, - params=[u"name", u"latency", u"parent", u"tags", u"type"], - continue_on_error=True - )[0][0] - else: - job = list(plot[u"data"].keys())[0] - build = str(plot[u"data"][job][0]) - data = input_data.tests(job, build) - - if data is None or len(data) == 0: - logging.error(u"No data.") - return - - desc = { - u"LAT0": u"No-load.", - u"PDR10": u"Low-load, 10% PDR.", - u"PDR50": u"Mid-load, 50% PDR.", - u"PDR90": u"High-load, 90% PDR.", - u"PDR": u"Full-load, 100% PDR.", - u"NDR10": u"Low-load, 10% NDR.", - u"NDR50": u"Mid-load, 50% NDR.", - u"NDR90": u"High-load, 90% NDR.", - u"NDR": u"Full-load, 100% NDR." - } - - graphs = [ - u"LAT0", - u"PDR10", - u"PDR50", - u"PDR90" - ] - - file_links = plot.get(u"output-file-links", None) - target_links = plot.get(u"target-links", None) - - for test in data: - try: - if test[u"type"] not in (u"NDRPDR",): - logging.warning(f"Invalid test type: {test[u'type']}") - continue - name = re.sub(REGEX_NIC, u"", test[u"parent"]. - replace(u'-ndrpdr', u'').replace(u'2n1l-', u'')) - try: - nic = re.search(REGEX_NIC, test[u"parent"]).group(1) - except (IndexError, AttributeError, KeyError, ValueError): - nic = u"" - name_link = f"{nic}-{test[u'name']}".replace(u'-ndrpdr', u'') - - logging.info(f" Generating the graph: {name_link}") - - fig = plgo.Figure() - layout = deepcopy(plot[u"layout"]) - - for color, graph in enumerate(graphs): - for idx, direction in enumerate((u"direction1", u"direction2")): - previous_x = 0.0 - prev_perc = 0.0 - xaxis = list() - yaxis = list() - hovertext = list() - try: - decoded = hdrh.histogram.HdrHistogram.decode( - test[u"latency"][graph][direction][u"hdrh"] - ) - except (hdrh.codec.HdrLengthException, TypeError): - logging.warning( - f"No data for direction {(u'W-E', u'E-W')[idx % 2]}" - ) - continue - - for item in decoded.get_recorded_iterator(): - # The real value is "percentile". - # For 100%, we cut that down to "x_perc" to avoid - # infinity. - percentile = item.percentile_level_iterated_to - x_perc = min(percentile, PERCENTILE_MAX) - xaxis.append(previous_x) - yaxis.append(item.value_iterated_to) - hovertext.append( - f"<b>{desc[graph]}</b><br>" - f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>" - f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>" - f"Latency: {item.value_iterated_to}uSec" - ) - next_x = 100.0 / (100.0 - x_perc) - xaxis.append(next_x) - yaxis.append(item.value_iterated_to) - hovertext.append( - f"<b>{desc[graph]}</b><br>" - f"Direction: {(u'W-E', u'E-W')[idx % 2]}<br>" - f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>" - f"Latency: {item.value_iterated_to}uSec" - ) - previous_x = next_x - prev_perc = percentile - fig.add_trace( - plgo.Scatter( - x=xaxis, - y=yaxis, - name=desc[graph], - mode=u"lines", - legendgroup=desc[graph], - showlegend=not(bool(idx)), - line=dict( - color=COLORS[color], - dash=u"solid", - width=1 if idx % 2 else 2 - ), - hovertext=hovertext, - hoverinfo=u"text" - ) - ) - - layout[u"title"][u"text"] = f"<b>Latency:</b> {name}" - x_max = log(100.0 / (100.0 - PERCENTILE_MAX), 10) - layout[u"xaxis"][u"range"] = [0, x_max] - fig.update_layout(layout) - - # Create plot - file_name = f"{plot[u'output-file']}-{name_link}.html" - logging.info(f" Writing file {file_name}") - - try: - # Export Plot - ploff.plot(fig, show_link=False, auto_open=False, - filename=file_name) - # Add link to the file: - if file_links and target_links: - with open(file_links, u"a") as file_handler: - file_handler.write( - f"- `{name_link} " - f"<{target_links}/{file_name.split(u'/')[-1]}>`_\n" - ) - except FileNotFoundError as err: - logging.error( - f"Not possible to write the link to the file " - f"{file_links}\n{err}" - ) - except PlotlyError as err: - logging.error(f" Finished with error: {repr(err)}") - - except hdrh.codec.HdrLengthException as err: - logging.warning(repr(err)) - continue - - except (ValueError, KeyError) as err: - logging.warning(repr(err)) - continue - - -def plot_nf_reconf_box_name(plot, input_data): - """Generate the plot(s) with algorithm: plot_nf_reconf_box_name - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating the data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - data = input_data.filter_tests_by_name( - plot, params=[u"result", u"parent", u"tags", u"type"] - ) - if data is None: - logging.error(u"No data.") - return - - for core in plot.get(u"core", tuple()): - # Prepare the data for the plot - y_vals = OrderedDict() - loss = dict() - for item in plot.get(u"include", tuple()): - reg_ex = re.compile(str(item.format(core=core)).lower()) - for job in data: - for build in job: - for test_id, test in build.iteritems(): - if not re.match(reg_ex, str(test_id).lower()): - continue - if y_vals.get(test[u"parent"], None) is None: - y_vals[test[u"parent"]] = list() - loss[test[u"parent"]] = list() - try: - y_vals[test[u"parent"]].append( - test[u"result"][u"time"] - ) - loss[test[u"parent"]].append( - test[u"result"][u"loss"] - ) - except (KeyError, TypeError): - y_vals[test[u"parent"]].append(None) - - # Add None to the lists with missing data - max_len = 0 - nr_of_samples = list() - for val in y_vals.values(): - if len(val) > max_len: - max_len = len(val) - nr_of_samples.append(len(val)) - for val in y_vals.values(): - if len(val) < max_len: - val.extend([None for _ in range(max_len - len(val))]) - - # Add plot traces - traces = list() - df_y = pd.DataFrame(y_vals) - df_y.head() - for i, col in enumerate(df_y.columns): - tst_name = re.sub( - REGEX_NIC, u"", - col.lower().replace(u'-reconf', u'').replace(u'2n1l-', u''). - replace(u'2n-', u'').replace(u'-testpmd', u'') - ) - traces.append(plgo.Box( - x=[str(i + 1) + u'.'] * len(df_y[col]), - y=df_y[col], - name=( - f"{i + 1}. " - f"({nr_of_samples[i]:02d} " - f"run{u's' if nr_of_samples[i] > 1 else u''}, " - f"packets lost average: {mean(loss[col]):.1f}) " - f"{u'-'.join(tst_name.split(u'-')[2:])}" - ), - hoverinfo=u"y+name" - )) - try: - # Create plot - layout = deepcopy(plot[u"layout"]) - layout[u"title"] = f"<b>Time Lost:</b> {layout[u'title']}" - layout[u"yaxis"][u"title"] = u"<b>Effective Blocked Time [s]</b>" - layout[u"legend"][u"font"][u"size"] = 14 - layout[u"yaxis"].pop(u"range") - plpl = plgo.Figure(data=traces, layout=layout) - - # Export Plot - file_name = f"{plot[u'output-file'].format(core=core)}.html" - logging.info(f" Writing file {file_name}") - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=file_name - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) - - -def plot_perf_box_name(plot, input_data): - """Generate the plot(s) with algorithm: plot_perf_box_name - specified in the specification file. - - Use only for soak and hoststack tests. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - data = input_data.filter_tests_by_name( - plot, - params=[u"throughput", u"gbps", u"result", u"parent", u"tags", u"type"]) - if data is None: - logging.error(u"No data.") - return - - # Prepare the data for the plot - y_vals = OrderedDict() - test_type = u"" - - for item in plot.get(u"include", tuple()): - reg_ex = re.compile(str(item).lower()) - for job in data: - for build in job: - for test_id, test in build.iteritems(): - if not re.match(reg_ex, str(test_id).lower()): - continue - if y_vals.get(test[u"parent"], None) is None: - y_vals[test[u"parent"]] = list() - try: - if test[u"type"] in (u"SOAK",): - y_vals[test[u"parent"]]. \ - append(test[u"throughput"][u"LOWER"]) - test_type = u"SOAK" - - elif test[u"type"] in (u"HOSTSTACK",): - if u"LDPRELOAD" in test[u"tags"]: - y_vals[test[u"parent"]].append( - float( - test[u"result"][u"bits_per_second"] - ) / 1e3 - ) - elif u"VPPECHO" in test[u"tags"]: - y_vals[test[u"parent"]].append( - (float( - test[u"result"][u"client"][u"tx_data"] - ) * 8 / 1e3) / - ((float( - test[u"result"][u"client"][u"time"] - ) + - float( - test[u"result"][u"server"][u"time"]) - ) / 2) - ) - test_type = u"HOSTSTACK" - - elif test[u"type"] in (u"LDP_NGINX",): - if u"TCP_CPS" in test[u"tags"]: - test_type = u"VSAP_CPS" - y_vals[test[u"parent"]].append( - test[u"result"][u"cps"] - ) - elif u"TCP_RPS" in test[u"tags"]: - test_type = u"VSAP_RPS" - y_vals[test[u"parent"]].append( - test[u"result"][u"rps"] - ) - else: - continue - else: - continue - - except (KeyError, TypeError): - y_vals[test[u"parent"]].append(None) - - # Add None to the lists with missing data - max_len = 0 - nr_of_samples = list() - for val in y_vals.values(): - if len(val) > max_len: - max_len = len(val) - nr_of_samples.append(len(val)) - for val in y_vals.values(): - if len(val) < max_len: - val.extend([None for _ in range(max_len - len(val))]) - - # Add plot traces - traces = list() - df_y = pd.DataFrame(y_vals) - df_y.head() - y_max = list() - for i, col in enumerate(df_y.columns): - tst_name = re.sub(REGEX_NIC, u"", - col.lower().replace(u'-ndrpdr', u''). - replace(u'2n1l-', u'')) - if test_type in (u"VSAP_CPS", u"VSAP_RPS"): - data_y = [y if y else None for y in df_y[col]] - else: - data_y = [y / 1e6 if y else None for y in df_y[col]] - kwargs = dict( - y=data_y, - name=( - f"{i + 1}. " - f"({nr_of_samples[i]:02d} " - f"run{u's' if nr_of_samples[i] > 1 else u''}) " - f"{tst_name}" - ), - hoverinfo=u"y+name" - ) - if test_type in (u"SOAK", ): - kwargs[u"boxpoints"] = u"all" - kwargs[u"jitter"] = 0.3 - - traces.append(plgo.Box(**kwargs)) - - try: - val_max = max(df_y[col]) - if val_max: - if test_type in (u"VSAP_CPS", u"VSAP_RPS"): - y_max.append(int(val_max)) - else: - y_max.append(int(val_max / 1e6)) - except (ValueError, TypeError) as err: - logging.error(repr(err)) - continue - - try: - # Create plot - layout = deepcopy(plot[u"layout"]) - layout[u"xaxis"][u"tickvals"] = [i for i in range(len(y_vals))] - layout[u"xaxis"][u"ticktext"] = [str(i + 1) for i in range(len(y_vals))] - if layout.get(u"title", None): - if test_type in (u"HOSTSTACK", ): - layout[u"title"] = f"<b>Bandwidth:</b> {layout[u'title']}" - elif test_type == u"VSAP_CPS": - layout[u"title"] = f"<b>CPS:</b> {layout[u'title']}" - layout[u"yaxis"][u"title"] = u"<b>Connection Rate [cps]</b>" - elif test_type == u"VSAP_RPS": - layout[u"title"] = f"<b>RPS:</b> {layout[u'title']}" - layout[u"yaxis"][u"title"] = u"<b>Connection Rate [rps]</b>" - else: - layout[u"title"] = f"<b>Tput:</b> {layout[u'title']}" - if y_max and max(y_max) > 1: - layout[u"yaxis"][u"range"] = [0, max(y_max) + 2] - plpl = plgo.Figure(data=traces, layout=layout) - - # Export Plot - logging.info(f" Writing file {plot[u'output-file']}.html.") - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=f"{plot[u'output-file']}.html" - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) - return - - -def plot_ndrpdr_box_name(plot, input_data): - """Generate the plot(s) with algorithm: plot_ndrpdr_box_name - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - data = input_data.filter_tests_by_name( - plot, - params=[u"throughput", u"gbps", u"parent", u"tags", u"type"] - ) - if data is None: - logging.error(u"No data.") - return - - if u"-gbps" in plot.get(u"title", u"").lower(): - value = u"gbps" - multiplier = 1e6 - else: - value = u"throughput" - multiplier = 1.0 - - test_type = u"" - - for ttype in plot.get(u"test-type", (u"ndr", u"pdr")): - for core in plot.get(u"core", tuple()): - # Prepare the data for the plot - data_x = list() - data_y = OrderedDict() - data_y_max = list() - idx = 1 - for item in plot.get(u"include", tuple()): - reg_ex = re.compile(str(item.format(core=core)).lower()) - for job in data: - for build in job: - for test_id, test in build.iteritems(): - if not re.match(reg_ex, str(test_id).lower()): - continue - if data_y.get(test[u"parent"], None) is None: - data_y[test[u"parent"]] = list() - test_type = test[u"type"] - data_x.append(idx) - idx += 1 - try: - data_y[test[u"parent"]].append( - test[value][ttype.upper()][u"LOWER"] * - multiplier - ) - except (KeyError, TypeError): - pass - - # Add plot traces - traces = list() - for idx, (key, vals) in enumerate(data_y.items()): - name = re.sub( - REGEX_NIC, u'', key.lower().replace(u'-ndrpdr', u''). - replace(u'2n1l-', u'') - ) - kwargs = dict( - y=[y / 1e6 if y else None for y in vals], - name=( - f"{idx + 1}." - f"({len(vals):02d} " - f"run" - f"{u's' if len(vals) > 1 else u''}) " - f"{name}" - ), - hoverinfo=u"y+name" - ) - box_points = plot.get(u"boxpoints", u"all") - if box_points in \ - (u"all", u"outliers", u"suspectedoutliers", False): - kwargs[u"boxpoints"] = box_points - kwargs[u"jitter"] = 0.3 - traces.append(plgo.Box(**kwargs)) - try: - data_y_max.append(max(vals)) - except ValueError as err: - logging.warning(f"No values to use.\n{err!r}") - try: - # Create plot - layout = deepcopy(plot[u"layout"]) - layout[u"xaxis"][u"tickvals"] = [i for i in range(len(data_y))] - layout[u"xaxis"][u"ticktext"] = \ - [str(i + 1) for i in range(len(data_y))] - if layout.get(u"title", None): - layout[u"title"] = \ - layout[u'title'].format(core=core, test_type=ttype) - if test_type in (u"CPS", ): - layout[u"title"] = f"<b>CPS:</b> {layout[u'title']}" - else: - layout[u"title"] = \ - f"<b>Tput:</b> {layout[u'title']}" - if data_y_max: - layout[u"yaxis"][u"range"] = [0, max(data_y_max) / 1e6 + 1] - plpl = plgo.Figure(data=traces, layout=layout) - - # Export Plot - file_name = ( - f"{plot[u'output-file'].format(core=core, test_type=ttype)}" - f".html" - ) - logging.info(f" Writing file {file_name}") - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=file_name - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) - - -def plot_mrr_box_name(plot, input_data): - """Generate the plot(s) with algorithm: plot_mrr_box_name - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - data = input_data.filter_tests_by_name( - plot, - params=[u"result", u"parent", u"tags", u"type"] - ) - if data is None: - logging.error(u"No data.") - return - - for core in plot.get(u"core", tuple()): - # Prepare the data for the plot - data_x = list() - data_names = list() - data_y = list() - data_y_max = list() - idx = 1 - for item in plot.get(u"include", tuple()): - reg_ex = re.compile(str(item.format(core=core)).lower()) - for job in data: - for build in job: - for test_id, test in build.iteritems(): - if not re.match(reg_ex, str(test_id).lower()): - continue - try: - data_x.append(idx) - name = re.sub( - REGEX_NIC, u'', test[u'parent'].lower(). - replace(u'-mrr', u'').replace(u'2n1l-', u'') - ) - data_y.append(test[u"result"][u"samples"]) - data_names.append( - f"{idx}." - f"({len(data_y[-1]):02d} " - f"run{u's' if len(data_y[-1]) > 1 else u''}) " - f"{name}" - ) - data_y_max.append(max(data_y[-1])) - idx += 1 - except (KeyError, TypeError): - pass - - # Add plot traces - traces = list() - for idx, x_item in enumerate(data_x): - kwargs = dict( - y=data_y[idx], - name=data_names[idx], - hoverinfo=u"y+name" - ) - box_points = plot.get(u"boxpoints", u"all") - if box_points in (u"all", u"outliers", u"suspectedoutliers", False): - kwargs[u"boxpoints"] = box_points - kwargs["jitter"] = 0.3 - traces.append(plgo.Box(**kwargs)) - - try: - # Create plot - layout = deepcopy(plot[u"layout"]) - layout[u"xaxis"][u"tickvals"] = [i for i in range(len(data_y))] - layout[u"xaxis"][u"ticktext"] = \ - [str(i + 1) for i in range(len(data_y))] - if layout.get(u"title", None): - layout[u"title"] = ( - f"<b>Tput:</b> {layout[u'title'].format(core=core)}" - ) - if data_y_max: - layout[u"yaxis"][u"range"] = [0, max(data_y_max) + 1] - plpl = plgo.Figure(data=traces, layout=layout) - - # Export Plot - file_name = f"{plot[u'output-file'].format(core=core)}.html" - logging.info(f" Writing file {file_name}") - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=file_name - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) - - -def plot_tsa_name(plot, input_data): - """Generate the plot(s) with algorithm: - plot_tsa_name - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - plot_title = plot.get(u"title", u"") - logging.info( - f" Creating data set for the {plot.get(u'type', u'')} {plot_title}." - ) - data = input_data.filter_tests_by_name( - plot, - params=[u"throughput", u"gbps", u"parent", u"tags", u"type"] - ) - if data is None: - logging.error(u"No data.") - return - - plot_title = plot_title.lower() - - if u"-gbps" in plot_title: - value = u"gbps" - h_unit = u"Gbps" - multiplier = 1e6 - else: - value = u"throughput" - h_unit = u"Mpps" - multiplier = 1.0 - - for ttype in plot.get(u"test-type", (u"ndr", u"pdr")): - y_vals = OrderedDict() - for item in plot.get(u"include", tuple()): - reg_ex = re.compile(str(item).lower()) - for job in data: - for build in job: - for test_id, test in build.iteritems(): - if re.match(reg_ex, str(test_id).lower()): - if y_vals.get(test[u"parent"], None) is None: - y_vals[test[u"parent"]] = { - u"1": list(), - u"2": list(), - u"4": list() - } - try: - if test[u"type"] not in (u"NDRPDR", u"CPS"): - continue - - if u"1C" in test[u"tags"]: - y_vals[test[u"parent"]][u"1"].append( - test[value][ttype.upper()][u"LOWER"] * - multiplier - ) - elif u"2C" in test[u"tags"]: - y_vals[test[u"parent"]][u"2"].append( - test[value][ttype.upper()][u"LOWER"] * - multiplier - ) - elif u"4C" in test[u"tags"]: - y_vals[test[u"parent"]][u"4"].append( - test[value][ttype.upper()][u"LOWER"] * - multiplier - ) - except (KeyError, TypeError): - pass - - if not y_vals: - logging.warning(f"No data for the plot {plot.get(u'title', u'')}") - return - - y_1c_max = dict() - for test_name, test_vals in y_vals.items(): - for key, test_val in test_vals.items(): - if test_val: - avg_val = sum(test_val) / len(test_val) - y_vals[test_name][key] = [avg_val, len(test_val)] - ideal = avg_val / (int(key) * 1e6) - if test_name not in y_1c_max or ideal > y_1c_max[test_name]: - y_1c_max[test_name] = ideal - - vals = OrderedDict() - y_max = list() - nic_limit = 0 - lnk_limit = 0 - pci_limit = 0 - for test_name, test_vals in y_vals.items(): - try: - if test_vals[u"1"][1]: - name = re.sub( - REGEX_NIC, - u"", - test_name.replace(u'-ndrpdr', u''). - replace(u'2n1l-', u'') - ) - vals[name] = OrderedDict() - y_val_1 = test_vals[u"1"][0] / 1e6 - y_val_2 = test_vals[u"2"][0] / 1e6 if test_vals[u"2"][0] \ - else None - y_val_4 = test_vals[u"4"][0] / 1e6 if test_vals[u"4"][0] \ - else None - - vals[name][u"val"] = [y_val_1, y_val_2, y_val_4] - vals[name][u"rel"] = [1.0, None, None] - vals[name][u"ideal"] = [ - y_1c_max[test_name], - y_1c_max[test_name] * 2, - y_1c_max[test_name] * 4 - ] - vals[name][u"diff"] = [ - (y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, - None, - None - ] - vals[name][u"count"] = [ - test_vals[u"1"][1], - test_vals[u"2"][1], - test_vals[u"4"][1] - ] - - try: - val_max = max(vals[name][u"val"]) - except ValueError as err: - logging.error(repr(err)) - continue - if val_max: - y_max.append(val_max) - - if y_val_2: - vals[name][u"rel"][1] = round(y_val_2 / y_val_1, 2) - vals[name][u"diff"][1] = \ - (y_val_2 - vals[name][u"ideal"][1]) * 100 / y_val_2 - if y_val_4: - vals[name][u"rel"][2] = round(y_val_4 / y_val_1, 2) - vals[name][u"diff"][2] = \ - (y_val_4 - vals[name][u"ideal"][2]) * 100 / y_val_4 - except IndexError as err: - logging.warning(f"No data for {test_name}") - logging.warning(repr(err)) - - # Limits: - if u"x520" in test_name: - limit = plot[u"limits"][u"nic"][u"x520"] - elif u"x710" in test_name: - limit = plot[u"limits"][u"nic"][u"x710"] - elif u"xxv710" in test_name: - limit = plot[u"limits"][u"nic"][u"xxv710"] - elif u"xl710" in test_name: - limit = plot[u"limits"][u"nic"][u"xl710"] - elif u"x553" in test_name: - limit = plot[u"limits"][u"nic"][u"x553"] - elif u"cx556a" in test_name: - limit = plot[u"limits"][u"nic"][u"cx556a"] - elif u"e810cq" in test_name: - limit = plot[u"limits"][u"nic"][u"e810cq"] - elif u"e810xxv" in test_name: - limit = plot[u"limits"][u"nic"][u"e810xxv"] - elif u"e822cq" in test_name: - limit = plot[u"limits"][u"nic"][u"e822cq"] - else: - limit = 0 - if limit > nic_limit: - nic_limit = limit - - mul = 2 if u"ge2p" in test_name else 1 - if u"10ge" in test_name: - limit = plot[u"limits"][u"link"][u"10ge"] * mul - elif u"25ge" in test_name: - limit = plot[u"limits"][u"link"][u"25ge"] * mul - elif u"40ge" in test_name: - limit = plot[u"limits"][u"link"][u"40ge"] * mul - elif u"100ge" in test_name: - limit = plot[u"limits"][u"link"][u"100ge"] * mul - else: - limit = 0 - if limit > lnk_limit: - lnk_limit = limit - - if u"cx556a" in test_name: - limit = plot[u"limits"][u"pci"][u"pci-g3-x8"] - else: - limit = plot[u"limits"][u"pci"][u"pci-g3-x16"] - if limit > pci_limit: - pci_limit = limit - - traces = list() - annotations = list() - x_vals = [1, 2, 4] - - # Limits: - if u"-gbps" not in plot_title and u"-cps-" not in plot_title: - nic_limit /= 1e6 - lnk_limit /= 1e6 - pci_limit /= 1e6 - min_limit = min((nic_limit, lnk_limit, pci_limit)) - if nic_limit == min_limit: - traces.append(plgo.Scatter( - x=x_vals, - y=[nic_limit, ] * len(x_vals), - name=f"NIC: {nic_limit:.2f}Mpps", - showlegend=False, - mode=u"lines", - line=dict( - dash=u"dot", - color=COLORS[-1], - width=1), - hoverinfo=u"none" - )) - annotations.append(dict( - x=1, - y=nic_limit, - xref=u"x", - yref=u"y", - xanchor=u"left", - yanchor=u"bottom", - text=f"NIC: {nic_limit:.2f}Mpps", - font=dict( - size=14, - color=COLORS[-1], - ), - align=u"left", - showarrow=False - )) - y_max.append(nic_limit) - elif lnk_limit == min_limit: - traces.append(plgo.Scatter( - x=x_vals, - y=[lnk_limit, ] * len(x_vals), - name=f"Link: {lnk_limit:.2f}Mpps", - showlegend=False, - mode=u"lines", - line=dict( - dash=u"dot", - color=COLORS[-1], - width=1), - hoverinfo=u"none" - )) - annotations.append(dict( - x=1, - y=lnk_limit, - xref=u"x", - yref=u"y", - xanchor=u"left", - yanchor=u"bottom", - text=f"Link: {lnk_limit:.2f}Mpps", - font=dict( - size=14, - color=COLORS[-1], - ), - align=u"left", - showarrow=False - )) - y_max.append(lnk_limit) - elif pci_limit == min_limit: - traces.append(plgo.Scatter( - x=x_vals, - y=[pci_limit, ] * len(x_vals), - name=f"PCIe: {pci_limit:.2f}Mpps", - showlegend=False, - mode=u"lines", - line=dict( - dash=u"dot", - color=COLORS[-1], - width=1), - hoverinfo=u"none" - )) - annotations.append(dict( - x=1, - y=pci_limit, - xref=u"x", - yref=u"y", - xanchor=u"left", - yanchor=u"bottom", - text=f"PCIe: {pci_limit:.2f}Mpps", - font=dict( - size=14, - color=COLORS[-1], - ), - align=u"left", - showarrow=False - )) - y_max.append(pci_limit) - - # Perfect and measured: - cidx = 0 - for name, val in vals.items(): - hovertext = list() - try: - for idx in range(len(val[u"val"])): - htext = "" - if isinstance(val[u"val"][idx], float): - htext += ( - f"No. of Runs: {val[u'count'][idx]}<br>" - f"Mean: {val[u'val'][idx]:.2f}{h_unit}<br>" - ) - if isinstance(val[u"diff"][idx], float): - htext += f"Diff: {round(val[u'diff'][idx]):.0f}%<br>" - if isinstance(val[u"rel"][idx], float): - htext += f"Speedup: {val[u'rel'][idx]:.2f}" - hovertext.append(htext) - traces.append( - plgo.Scatter( - x=x_vals, - y=val[u"val"], - name=name, - legendgroup=name, - mode=u"lines+markers", - line=dict( - color=COLORS[cidx], - width=2), - marker=dict( - symbol=u"circle", - size=10 - ), - text=hovertext, - hoverinfo=u"text+name" - ) - ) - traces.append( - plgo.Scatter( - x=x_vals, - y=val[u"ideal"], - name=f"{name} perfect", - legendgroup=name, - showlegend=False, - mode=u"lines", - line=dict( - color=COLORS[cidx], - width=2, - dash=u"dash"), - text=[f"Perfect: {y:.2f}Mpps" for y in val[u"ideal"]], - hoverinfo=u"text" - ) - ) - cidx += 1 - except (IndexError, ValueError, KeyError) as err: - logging.warning(f"No data for {name}\n{repr(err)}") - - try: - # Create plot - file_name = f"{plot[u'output-file'].format(test_type=ttype)}.html" - logging.info(f" Writing file {file_name}") - layout = deepcopy(plot[u"layout"]) - if layout.get(u"title", None): - layout[u"title"] = ( - f"<b>Speedup Multi-core:</b> " - f"{layout[u'title'].format(test_type=ttype)}" - ) - layout[u"yaxis"][u"range"] = [0, int(max(y_max) * 1.1)] - layout[u"annotations"].extend(annotations) - plpl = plgo.Figure(data=traces, layout=layout) - - # Export Plot - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=file_name - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) - - -def plot_http_server_perf_box(plot, input_data): - """Generate the plot(s) with algorithm: plot_http_server_perf_box - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - # Transform the data - logging.info( - f" Creating the data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - data = input_data.filter_data(plot) - if data is None: - logging.error(u"No data.") - return - - # Prepare the data for the plot - y_vals = dict() - for job in data: - for build in job: - for test in build: - if y_vals.get(test[u"name"], None) is None: - y_vals[test[u"name"]] = list() - try: - y_vals[test[u"name"]].append(test[u"result"]) - except (KeyError, TypeError): - y_vals[test[u"name"]].append(None) - - # Add None to the lists with missing data - max_len = 0 - nr_of_samples = list() - for val in y_vals.values(): - if len(val) > max_len: - max_len = len(val) - nr_of_samples.append(len(val)) - for val in y_vals.values(): - if len(val) < max_len: - val.extend([None for _ in range(max_len - len(val))]) - - # Add plot traces - traces = list() - df_y = pd.DataFrame(y_vals) - df_y.head() - for i, col in enumerate(df_y.columns): - name = \ - f"{i + 1}. " \ - f"({nr_of_samples[i]:02d} " \ - f"run{u's' if nr_of_samples[i] > 1 else u''}) " \ - f"{col.lower().replace(u'-ndrpdr', u'')}" - if len(name) > 50: - name_lst = name.split(u'-') - name = u"" - split_name = True - for segment in name_lst: - if (len(name) + len(segment) + 1) > 50 and split_name: - name += u"<br> " - split_name = False - name += segment + u'-' - name = name[:-1] - - traces.append(plgo.Box(x=[str(i + 1) + u'.'] * len(df_y[col]), - y=df_y[col], - name=name, - **plot[u"traces"])) - try: - # Create plot - plpl = plgo.Figure(data=traces, layout=plot[u"layout"]) - - # Export Plot - logging.info( - f" Writing file {plot[u'output-file']}" - f"{plot[u'output-file-type']}." - ) - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=f"{plot[u'output-file']}{plot[u'output-file-type']}" - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) - return - - -def plot_nf_heatmap(plot, input_data): - """Generate the plot(s) with algorithm: plot_nf_heatmap - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - def sort_by_int(value): - """Makes possible to sort a list of strings which represent integers. - - :param value: Integer as a string. - :type value: str - :returns: Integer representation of input parameter 'value'. - :rtype: int - """ - return int(value) - - regex_cn = re.compile(r'^(\d*)R(\d*)C$') - regex_test_name = re.compile(r'^.*-(\d+ch|\d+pl)-' - r'(\d+mif|\d+vh)-' - r'(\d+vm\d+t|\d+dcr\d+t|\d+dcr\d+c).*$') - # Transform the data - logging.info( - f" Creating the data set for the {plot.get(u'type', u'')} " - f"{plot.get(u'title', u'')}." - ) - in_data = input_data.filter_tests_by_name( - plot, - continue_on_error=True, - params=[u"throughput", u"result", u"name", u"tags", u"type"] - ) - if in_data is None or in_data.empty: - logging.error(u"No data.") - return - - for ttype in plot.get(u"test-type", (u"ndr", u"pdr")): - for core in plot.get(u"core", tuple()): - vals = dict() - for item in plot.get(u"include", tuple()): - reg_ex = re.compile(str(item.format(core=core)).lower()) - for job in in_data: - for build in job: - for test_id, test in build.iteritems(): - if not re.match(reg_ex, str(test_id).lower()): - continue - for tag in test[u"tags"]: - groups = re.search(regex_cn, tag) - if groups: - chain = str(groups.group(1)) - node = str(groups.group(2)) - break - else: - continue - groups = re.search(regex_test_name, test[u"name"]) - if groups and len(groups.groups()) == 3: - hover_name = ( - f"{str(groups.group(1))}-" - f"{str(groups.group(2))}-" - f"{str(groups.group(3))}" - ) - else: - hover_name = u"" - if vals.get(chain, None) is None: - vals[chain] = dict() - if vals[chain].get(node, None) is None: - vals[chain][node] = dict( - name=hover_name, - vals=list(), - nr=None, - mean=None, - stdev=None - ) - try: - if ttype == u"mrr": - result = test[u"result"][u"receive-rate"] - elif ttype == u"pdr": - result = \ - test[u"throughput"][u"PDR"][u"LOWER"] - elif ttype == u"ndr": - result = \ - test[u"throughput"][u"NDR"][u"LOWER"] - else: - result = None - except TypeError: - result = None - - if result: - vals[chain][node][u"vals"].append(result) - - if not vals: - logging.error(u"No data.") - return - - txt_chains = list() - txt_nodes = list() - for key_c in vals: - txt_chains.append(key_c) - for key_n in vals[key_c].keys(): - txt_nodes.append(key_n) - if vals[key_c][key_n][u"vals"]: - vals[key_c][key_n][u"nr"] = \ - len(vals[key_c][key_n][u"vals"]) - vals[key_c][key_n][u"mean"] = \ - round(mean(vals[key_c][key_n][u"vals"]) / 1e6, 1) - vals[key_c][key_n][u"stdev"] = \ - round(stdev(vals[key_c][key_n][u"vals"]) / 1e6, 1) - txt_nodes = list(set(txt_nodes)) - - txt_chains = sorted(txt_chains, key=sort_by_int) - txt_nodes = sorted(txt_nodes, key=sort_by_int) - - chains = [i + 1 for i in range(len(txt_chains))] - nodes = [i + 1 for i in range(len(txt_nodes))] - - data = [list() for _ in range(len(chains))] - for chain in chains: - for node in nodes: - try: - val = vals[txt_chains[chain - 1]] \ - [txt_nodes[node - 1]][u"mean"] - except (KeyError, IndexError): - val = None - data[chain - 1].append(val) - - # Color scales: - my_green = [[0.0, u"rgb(235, 249, 242)"], - [1.0, u"rgb(45, 134, 89)"]] - - my_blue = [[0.0, u"rgb(236, 242, 248)"], - [1.0, u"rgb(57, 115, 172)"]] - - my_grey = [[0.0, u"rgb(230, 230, 230)"], - [1.0, u"rgb(102, 102, 102)"]] - - hovertext = list() - annotations = list() - - text = (u"Test: {name}<br>" - u"Runs: {nr}<br>" - u"Thput: {val}<br>" - u"StDev: {stdev}") - - for chain, _ in enumerate(txt_chains): - hover_line = list() - for node, _ in enumerate(txt_nodes): - if data[chain][node] is not None: - annotations.append( - dict( - x=node+1, - y=chain+1, - xref=u"x", - yref=u"y", - xanchor=u"center", - yanchor=u"middle", - text=str(data[chain][node]), - font=dict( - size=14, - ), - align=u"center", - showarrow=False - ) - ) - hover_line.append(text.format( - name=vals[txt_chains[chain]][txt_nodes[node]] - [u"name"], - nr=vals[txt_chains[chain]][txt_nodes[node]][u"nr"], - val=data[chain][node], - stdev=vals[txt_chains[chain]][txt_nodes[node]] - [u"stdev"] - )) - hovertext.append(hover_line) - - traces = [ - plgo.Heatmap( - x=nodes, - y=chains, - z=data, - colorbar=dict( - title=plot.get(u"z-axis", u"{test_type}"). - format(test_type=ttype.upper()), - titleside=u"right", - titlefont=dict( - size=16 - ), - tickfont=dict( - size=16, - ), - tickformat=u".1f", - yanchor=u"bottom", - y=-0.02, - len=0.925, - ), - showscale=True, - colorscale=my_green, - text=hovertext, - hoverinfo=u"text" - ) - ] - - for idx, item in enumerate(txt_nodes): - # X-axis, numbers: - annotations.append( - dict( - x=idx+1, - y=0.05, - xref=u"x", - yref=u"y", - xanchor=u"center", - yanchor=u"top", - text=item, - font=dict( - size=16, - ), - align=u"center", - showarrow=False - ) - ) - for idx, item in enumerate(txt_chains): - # Y-axis, numbers: - annotations.append( - dict( - x=0.35, - y=idx+1, - xref=u"x", - yref=u"y", - xanchor=u"right", - yanchor=u"middle", - text=item, - font=dict( - size=16, - ), - align=u"center", - showarrow=False - ) - ) - # X-axis, title: - annotations.append( - dict( - x=0.55, - y=-0.15, - xref=u"paper", - yref=u"y", - xanchor=u"center", - yanchor=u"bottom", - text=plot.get(u"x-axis", u""), - font=dict( - size=16, - ), - align=u"center", - showarrow=False - ) - ) - # Y-axis, title: - annotations.append( - dict( - x=-0.1, - y=0.5, - xref=u"x", - yref=u"paper", - xanchor=u"center", - yanchor=u"middle", - text=plot.get(u"y-axis", u""), - font=dict( - size=16, - ), - align=u"center", - textangle=270, - showarrow=False - ) - ) - updatemenus = list([ - dict( - x=1.0, - y=0.0, - xanchor=u"right", - yanchor=u"bottom", - direction=u"up", - buttons=list([ - dict( - args=[ - { - u"colorscale": [my_green, ], - u"reversescale": False - } - ], - label=u"Green", - method=u"update" - ), - dict( - args=[ - { - u"colorscale": [my_blue, ], - u"reversescale": False - } - ], - label=u"Blue", - method=u"update" - ), - dict( - args=[ - { - u"colorscale": [my_grey, ], - u"reversescale": False - } - ], - label=u"Grey", - method=u"update" - ) - ]) - ) - ]) - - try: - layout = deepcopy(plot[u"layout"]) - except KeyError as err: - logging.error( - f"Finished with error: No layout defined\n{repr(err)}" - ) - return - - layout[u"annotations"] = annotations - layout[u'updatemenus'] = updatemenus - if layout.get(u"title", None): - layout[u"title"] = layout[u'title'].replace(u"test_type", ttype) - - try: - # Create plot - plpl = plgo.Figure(data=traces, layout=layout) - - # Export Plot - file_name = ( - f"{plot[u'output-file'].format(core=core, test_type=ttype)}" - f".html" - ) - logging.info(f" Writing file {file_name}") - ploff.plot( - plpl, - show_link=False, - auto_open=False, - filename=file_name - ) - except PlotlyError as err: - logging.error( - f" Finished with error: {repr(err)}".replace(u"\n", u" ") - ) |