diff options
Diffstat (limited to 'resources/tools/presentation/generator_tables.py')
-rw-r--r-- | resources/tools/presentation/generator_tables.py | 109 |
1 files changed, 109 insertions, 0 deletions
diff --git a/resources/tools/presentation/generator_tables.py b/resources/tools/presentation/generator_tables.py index 0646db3ab8..1a15605618 100644 --- a/resources/tools/presentation/generator_tables.py +++ b/resources/tools/presentation/generator_tables.py @@ -525,6 +525,115 @@ def table_nics_comparison(table, input_data): convert_csv_to_pretty_txt(csv_file, "{0}.txt".format(table["output-file"])) +def table_soak_vs_ndr(table, input_data): + """Generate the table(s) with algorithm: table_soak_vs_ndr + specified in the specification file. + + :param table: Table to generate. + :param input_data: Data to process. + :type table: pandas.Series + :type input_data: InputData + """ + + logging.info(" Generating the table {0} ...". + format(table.get("title", ""))) + + # Transform the data + logging.info(" Creating the data set for the {0} '{1}'.". + format(table.get("type", ""), table.get("title", ""))) + data = input_data.filter_data(table, continue_on_error=True) + + # Prepare the header of the table + try: + header = [ + "Test case", + "{0} Throughput [Mpps]".format(table["reference"]["title"]), + "{0} Stdev [Mpps]".format(table["reference"]["title"]), + "{0} Throughput [Mpps]".format(table["compare"]["title"]), + "{0} Stdev [Mpps]".format(table["compare"]["title"]), + "Delta [%]"] + header_str = ",".join(header) + "\n" + except (AttributeError, KeyError) as err: + logging.error("The model is invalid, missing parameter: {0}". + format(err)) + return + + # Create a list of available SOAK test results: + tbl_dict = dict() + for job, builds in table["compare"]["data"].items(): + for build in builds: + for tst_name, tst_data in data[job][str(build)].iteritems(): + if tst_data["type"] == "SOAK": + tst_name_mod = tst_name.replace("-soak", "") + if tbl_dict.get(tst_name_mod, None) is None: + tbl_dict[tst_name_mod] = { + "name": tst_name_mod, + "ref-data": list(), + "cmp-data": list() + } + try: + tbl_dict[tst_name_mod]["cmp-data"].append( + tst_data["throughput"]["LOWER"]) + except (KeyError, TypeError): + pass + tests_lst = tbl_dict.keys() + + # Add corresponding NDR test results: + for job, builds in table["reference"]["data"].items(): + for build in builds: + for tst_name, tst_data in data[job][str(build)].iteritems(): + tst_name_mod = tst_name.replace("-ndrpdr", "").\ + replace("-mrr", "") + if tst_name_mod in tests_lst: + try: + if tst_data["type"] in ("NDRPDR", "MRR", "BMRR"): + if table["include-tests"] == "MRR": + result = tst_data["result"]["receive-rate"].avg + elif table["include-tests"] == "PDR": + result = tst_data["throughput"]["PDR"]["LOWER"] + elif table["include-tests"] == "NDR": + result = tst_data["throughput"]["NDR"]["LOWER"] + else: + result = None + if result is not None: + tbl_dict[tst_name_mod]["ref-data"].append( + result) + except (KeyError, TypeError): + continue + + tbl_lst = list() + for tst_name in tbl_dict.keys(): + item = [tbl_dict[tst_name]["name"], ] + data_t = tbl_dict[tst_name]["ref-data"] + if data_t: + item.append(round(mean(data_t) / 1000000, 2)) + item.append(round(stdev(data_t) / 1000000, 2)) + else: + item.extend([None, None]) + data_t = tbl_dict[tst_name]["cmp-data"] + if data_t: + item.append(round(mean(data_t) / 1000000, 2)) + item.append(round(stdev(data_t) / 1000000, 2)) + else: + item.extend([None, None]) + if item[-4] is not None and item[-2] is not None and item[-4] != 0: + item.append(int(relative_change(float(item[-4]), float(item[-2])))) + if len(item) == len(header): + tbl_lst.append(item) + + # Sort the table according to the relative change + tbl_lst.sort(key=lambda rel: rel[-1], reverse=True) + + # Generate csv tables: + csv_file = "{0}.csv".format(table["output-file"]) + with open(csv_file, "w") as file_handler: + file_handler.write(header_str) + for test in tbl_lst: + file_handler.write(",".join([str(item) for item in test]) + "\n") + + convert_csv_to_pretty_txt(csv_file, "{0}.txt".format(table["output-file"])) + + def table_performance_trending_dashboard(table, input_data): """Generate the table(s) with algorithm: table_performance_trending_dashboard |