aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_tables.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/generator_tables.py')
-rw-r--r--resources/tools/presentation/generator_tables.py109
1 files changed, 109 insertions, 0 deletions
diff --git a/resources/tools/presentation/generator_tables.py b/resources/tools/presentation/generator_tables.py
index 0646db3ab8..1a15605618 100644
--- a/resources/tools/presentation/generator_tables.py
+++ b/resources/tools/presentation/generator_tables.py
@@ -525,6 +525,115 @@ def table_nics_comparison(table, input_data):
convert_csv_to_pretty_txt(csv_file, "{0}.txt".format(table["output-file"]))
+def table_soak_vs_ndr(table, input_data):
+ """Generate the table(s) with algorithm: table_soak_vs_ndr
+ specified in the specification file.
+
+ :param table: Table to generate.
+ :param input_data: Data to process.
+ :type table: pandas.Series
+ :type input_data: InputData
+ """
+
+ logging.info(" Generating the table {0} ...".
+ format(table.get("title", "")))
+
+ # Transform the data
+ logging.info(" Creating the data set for the {0} '{1}'.".
+ format(table.get("type", ""), table.get("title", "")))
+ data = input_data.filter_data(table, continue_on_error=True)
+
+ # Prepare the header of the table
+ try:
+ header = [
+ "Test case",
+ "{0} Throughput [Mpps]".format(table["reference"]["title"]),
+ "{0} Stdev [Mpps]".format(table["reference"]["title"]),
+ "{0} Throughput [Mpps]".format(table["compare"]["title"]),
+ "{0} Stdev [Mpps]".format(table["compare"]["title"]),
+ "Delta [%]"]
+ header_str = ",".join(header) + "\n"
+ except (AttributeError, KeyError) as err:
+ logging.error("The model is invalid, missing parameter: {0}".
+ format(err))
+ return
+
+ # Create a list of available SOAK test results:
+ tbl_dict = dict()
+ for job, builds in table["compare"]["data"].items():
+ for build in builds:
+ for tst_name, tst_data in data[job][str(build)].iteritems():
+ if tst_data["type"] == "SOAK":
+ tst_name_mod = tst_name.replace("-soak", "")
+ if tbl_dict.get(tst_name_mod, None) is None:
+ tbl_dict[tst_name_mod] = {
+ "name": tst_name_mod,
+ "ref-data": list(),
+ "cmp-data": list()
+ }
+ try:
+ tbl_dict[tst_name_mod]["cmp-data"].append(
+ tst_data["throughput"]["LOWER"])
+ except (KeyError, TypeError):
+ pass
+ tests_lst = tbl_dict.keys()
+
+ # Add corresponding NDR test results:
+ for job, builds in table["reference"]["data"].items():
+ for build in builds:
+ for tst_name, tst_data in data[job][str(build)].iteritems():
+ tst_name_mod = tst_name.replace("-ndrpdr", "").\
+ replace("-mrr", "")
+ if tst_name_mod in tests_lst:
+ try:
+ if tst_data["type"] in ("NDRPDR", "MRR", "BMRR"):
+ if table["include-tests"] == "MRR":
+ result = tst_data["result"]["receive-rate"].avg
+ elif table["include-tests"] == "PDR":
+ result = tst_data["throughput"]["PDR"]["LOWER"]
+ elif table["include-tests"] == "NDR":
+ result = tst_data["throughput"]["NDR"]["LOWER"]
+ else:
+ result = None
+ if result is not None:
+ tbl_dict[tst_name_mod]["ref-data"].append(
+ result)
+ except (KeyError, TypeError):
+ continue
+
+ tbl_lst = list()
+ for tst_name in tbl_dict.keys():
+ item = [tbl_dict[tst_name]["name"], ]
+ data_t = tbl_dict[tst_name]["ref-data"]
+ if data_t:
+ item.append(round(mean(data_t) / 1000000, 2))
+ item.append(round(stdev(data_t) / 1000000, 2))
+ else:
+ item.extend([None, None])
+ data_t = tbl_dict[tst_name]["cmp-data"]
+ if data_t:
+ item.append(round(mean(data_t) / 1000000, 2))
+ item.append(round(stdev(data_t) / 1000000, 2))
+ else:
+ item.extend([None, None])
+ if item[-4] is not None and item[-2] is not None and item[-4] != 0:
+ item.append(int(relative_change(float(item[-4]), float(item[-2]))))
+ if len(item) == len(header):
+ tbl_lst.append(item)
+
+ # Sort the table according to the relative change
+ tbl_lst.sort(key=lambda rel: rel[-1], reverse=True)
+
+ # Generate csv tables:
+ csv_file = "{0}.csv".format(table["output-file"])
+ with open(csv_file, "w") as file_handler:
+ file_handler.write(header_str)
+ for test in tbl_lst:
+ file_handler.write(",".join([str(item) for item in test]) + "\n")
+
+ convert_csv_to_pretty_txt(csv_file, "{0}.txt".format(table["output-file"]))
+
+
def table_performance_trending_dashboard(table, input_data):
"""Generate the table(s) with algorithm:
table_performance_trending_dashboard