aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/new/generator_CPTA.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/new/generator_CPTA.py')
-rw-r--r--resources/tools/presentation/new/generator_CPTA.py463
1 files changed, 0 insertions, 463 deletions
diff --git a/resources/tools/presentation/new/generator_CPTA.py b/resources/tools/presentation/new/generator_CPTA.py
deleted file mode 100644
index d4ac06d09f..0000000000
--- a/resources/tools/presentation/new/generator_CPTA.py
+++ /dev/null
@@ -1,463 +0,0 @@
-# Copyright (c) 2018 Cisco and/or its affiliates.
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at:
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""Generation of Continuous Performance Trending and Analysis.
-"""
-
-import multiprocessing
-import os
-import logging
-import csv
-import prettytable
-import plotly.offline as ploff
-import plotly.graph_objs as plgo
-import plotly.exceptions as plerr
-import pandas as pd
-
-from collections import OrderedDict
-from datetime import datetime
-
-from utils import archive_input_data, execute_command, \
- classify_anomalies, Worker
-
-
-# Command to build the html format of the report
-HTML_BUILDER = 'sphinx-build -v -c conf_cpta -a ' \
- '-b html -E ' \
- '-t html ' \
- '-D version="{date}" ' \
- '{working_dir} ' \
- '{build_dir}/'
-
-# .css file for the html format of the report
-THEME_OVERRIDES = """/* override table width restrictions */
-.wy-nav-content {
- max-width: 1200px !important;
-}
-"""
-
-COLORS = ["SkyBlue", "Olive", "Purple", "Coral", "Indigo", "Pink",
- "Chocolate", "Brown", "Magenta", "Cyan", "Orange", "Black",
- "Violet", "Blue", "Yellow"]
-
-
-def generate_cpta(spec, data):
- """Generate all formats and versions of the Continuous Performance Trending
- and Analysis.
-
- :param spec: Specification read from the specification file.
- :param data: Full data set.
- :type spec: Specification
- :type data: InputData
- """
-
- logging.info("Generating the Continuous Performance Trending and Analysis "
- "...")
-
- ret_code = _generate_all_charts(spec, data)
-
- cmd = HTML_BUILDER.format(
- date=datetime.utcnow().strftime('%m/%d/%Y %H:%M UTC'),
- working_dir=spec.environment["paths"]["DIR[WORKING,SRC]"],
- build_dir=spec.environment["paths"]["DIR[BUILD,HTML]"])
- execute_command(cmd)
-
- with open(spec.environment["paths"]["DIR[CSS_PATCH_FILE]"], "w") as \
- css_file:
- css_file.write(THEME_OVERRIDES)
-
- with open(spec.environment["paths"]["DIR[CSS_PATCH_FILE2]"], "w") as \
- css_file:
- css_file.write(THEME_OVERRIDES)
-
- archive_input_data(spec)
-
- logging.info("Done.")
-
- return ret_code
-
-
-def _generate_trending_traces(in_data, job_name, build_info,
- show_trend_line=True, name="", color=""):
- """Generate the trending traces:
- - samples,
- - outliers, regress, progress
- - average of normal samples (trending line)
-
- :param in_data: Full data set.
- :param job_name: The name of job which generated the data.
- :param build_info: Information about the builds.
- :param show_trend_line: Show moving median (trending plot).
- :param name: Name of the plot
- :param color: Name of the color for the plot.
- :type in_data: OrderedDict
- :type job_name: str
- :type build_info: dict
- :type show_trend_line: bool
- :type name: str
- :type color: str
- :returns: Generated traces (list) and the evaluated result.
- :rtype: tuple(traces, result)
- """
-
- data_x = list(in_data.keys())
- data_y = list(in_data.values())
-
- hover_text = list()
- xaxis = list()
- for idx in data_x:
- if "dpdk" in job_name:
- hover_text.append("dpdk-ref: {0}<br>csit-ref: mrr-weekly-build-{1}".
- format(build_info[job_name][str(idx)][1].
- rsplit('~', 1)[0], idx))
- elif "vpp" in job_name:
- hover_text.append("vpp-ref: {0}<br>csit-ref: mrr-daily-build-{1}".
- format(build_info[job_name][str(idx)][1].
- rsplit('~', 1)[0], idx))
- date = build_info[job_name][str(idx)][0]
- xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
- int(date[9:11]), int(date[12:])))
-
- data_pd = pd.Series(data_y, index=xaxis)
-
- anomaly_classification, avgs = classify_anomalies(data_pd)
-
- anomalies = pd.Series()
- anomalies_colors = list()
- anomalies_avgs = list()
- anomaly_color = {
- "regression": 0.0,
- "normal": 0.5,
- "progression": 1.0
- }
- if anomaly_classification:
- for idx, item in enumerate(data_pd.items()):
- if anomaly_classification[idx] in \
- ("outlier", "regression", "progression"):
- anomalies = anomalies.append(pd.Series([item[1], ],
- index=[item[0], ]))
- anomalies_colors.append(
- anomaly_color[anomaly_classification[idx]])
- anomalies_avgs.append(avgs[idx])
- anomalies_colors.extend([0.0, 0.5, 1.0])
-
- # Create traces
-
- trace_samples = plgo.Scatter(
- x=xaxis,
- y=data_y,
- mode='markers',
- line={
- "width": 1
- },
- showlegend=True,
- legendgroup=name,
- name="{name}".format(name=name),
- marker={
- "size": 5,
- "color": color,
- "symbol": "circle",
- },
- text=hover_text,
- hoverinfo="x+y+text+name"
- )
- traces = [trace_samples, ]
-
- if show_trend_line:
- trace_trend = plgo.Scatter(
- x=xaxis,
- y=avgs,
- mode='lines',
- line={
- "shape": "linear",
- "width": 1,
- "color": color,
- },
- showlegend=False,
- legendgroup=name,
- name='{name}-trend'.format(name=name)
- )
- traces.append(trace_trend)
-
- trace_anomalies = plgo.Scatter(
- x=anomalies.keys(),
- y=anomalies_avgs,
- mode='markers',
- hoverinfo="none",
- showlegend=False,
- legendgroup=name,
- name="{name}-anomalies".format(name=name),
- marker={
- "size": 15,
- "symbol": "circle-open",
- "color": anomalies_colors,
- "colorscale": [[0.00, "red"],
- [0.33, "red"],
- [0.33, "white"],
- [0.66, "white"],
- [0.66, "green"],
- [1.00, "green"]],
- "showscale": True,
- "line": {
- "width": 2
- },
- "colorbar": {
- "y": 0.5,
- "len": 0.8,
- "title": "Circles Marking Data Classification",
- "titleside": 'right',
- "titlefont": {
- "size": 14
- },
- "tickmode": 'array',
- "tickvals": [0.167, 0.500, 0.833],
- "ticktext": ["Regression", "Normal", "Progression"],
- "ticks": "",
- "ticklen": 0,
- "tickangle": -90,
- "thickness": 10
- }
- }
- )
- traces.append(trace_anomalies)
-
- if anomaly_classification:
- return traces, anomaly_classification[-1]
- else:
- return traces, None
-
-
-def _generate_all_charts(spec, input_data):
- """Generate all charts specified in the specification file.
-
- :param spec: Specification.
- :param input_data: Full data set.
- :type spec: Specification
- :type input_data: InputData
- """
-
- def _generate_chart(_, data_q, graph):
- """Generates the chart.
- """
-
- logs = list()
-
- logging.info(" Generating the chart '{0}' ...".
- format(graph.get("title", "")))
- logs.append(("INFO", " Generating the chart '{0}' ...".
- format(graph.get("title", ""))))
-
- job_name = graph["data"].keys()[0]
-
- csv_tbl = list()
- res = list()
-
- # Transform the data
- logs.append(("INFO", " Creating the data set for the {0} '{1}'.".
- format(graph.get("type", ""), graph.get("title", ""))))
- data = input_data.filter_data(graph, continue_on_error=True)
- if data is None:
- logging.error("No data.")
- return
-
- chart_data = dict()
- for job, job_data in data.iteritems():
- if job != job_name:
- continue
- for index, bld in job_data.items():
- for test_name, test in bld.items():
- if chart_data.get(test_name, None) is None:
- chart_data[test_name] = OrderedDict()
- try:
- chart_data[test_name][int(index)] = \
- test["result"]["throughput"]
- except (KeyError, TypeError):
- pass
-
- # Add items to the csv table:
- for tst_name, tst_data in chart_data.items():
- tst_lst = list()
- for bld in builds_dict[job_name]:
- itm = tst_data.get(int(bld), '')
- tst_lst.append(str(itm))
- csv_tbl.append("{0},".format(tst_name) + ",".join(tst_lst) + '\n')
- # Generate traces:
- traces = list()
- win_size = 14
- index = 0
- for test_name, test_data in chart_data.items():
- if not test_data:
- logs.append(("WARNING", "No data for the test '{0}'".
- format(test_name)))
- continue
- test_name = test_name.split('.')[-1]
- trace, rslt = _generate_trending_traces(
- test_data,
- job_name=job_name,
- build_info=build_info,
- name='-'.join(test_name.split('-')[3:-1]),
- color=COLORS[index])
- traces.extend(trace)
- res.append(rslt)
- index += 1
-
- if traces:
- # Generate the chart:
- graph["layout"]["xaxis"]["title"] = \
- graph["layout"]["xaxis"]["title"].format(job=job_name)
- name_file = "{0}-{1}{2}".format(spec.cpta["output-file"],
- graph["output-file-name"],
- spec.cpta["output-file-type"])
-
- logs.append(("INFO", " Writing the file '{0}' ...".
- format(name_file)))
- plpl = plgo.Figure(data=traces, layout=graph["layout"])
- try:
- ploff.plot(plpl, show_link=False, auto_open=False,
- filename=name_file)
- except plerr.PlotlyEmptyDataError:
- logs.append(("WARNING", "No data for the plot. Skipped."))
-
- data_out = {
- "job_name": job_name,
- "csv_table": csv_tbl,
- "results": res,
- "logs": logs
- }
- data_q.put(data_out)
-
- builds_dict = dict()
- for job in spec.input["builds"].keys():
- if builds_dict.get(job, None) is None:
- builds_dict[job] = list()
- for build in spec.input["builds"][job]:
- status = build["status"]
- if status != "failed" and status != "not found":
- builds_dict[job].append(str(build["build"]))
-
- # Create "build ID": "date" dict:
- build_info = dict()
- for job_name, job_data in builds_dict.items():
- if build_info.get(job_name, None) is None:
- build_info[job_name] = OrderedDict()
- for build in job_data:
- build_info[job_name][build] = (
- input_data.metadata(job_name, build).get("generated", ""),
- input_data.metadata(job_name, build).get("version", "")
- )
-
- work_queue = multiprocessing.JoinableQueue()
- manager = multiprocessing.Manager()
- data_queue = manager.Queue()
- cpus = multiprocessing.cpu_count()
-
- workers = list()
- for cpu in range(cpus):
- worker = Worker(work_queue,
- data_queue,
- _generate_chart)
- worker.daemon = True
- worker.start()
- workers.append(worker)
- os.system("taskset -p -c {0} {1} > /dev/null 2>&1".
- format(cpu, worker.pid))
-
- for chart in spec.cpta["plots"]:
- work_queue.put((chart, ))
- work_queue.join()
-
- anomaly_classifications = list()
-
- # Create the header:
- csv_tables = dict()
- for job_name in builds_dict.keys():
- if csv_tables.get(job_name, None) is None:
- csv_tables[job_name] = list()
- header = "Build Number:," + ",".join(builds_dict[job_name]) + '\n'
- csv_tables[job_name].append(header)
- build_dates = [x[0] for x in build_info[job_name].values()]
- header = "Build Date:," + ",".join(build_dates) + '\n'
- csv_tables[job_name].append(header)
- versions = [x[1] for x in build_info[job_name].values()]
- header = "Version:," + ",".join(versions) + '\n'
- csv_tables[job_name].append(header)
-
- while not data_queue.empty():
- result = data_queue.get()
-
- anomaly_classifications.extend(result["results"])
- csv_tables[result["job_name"]].extend(result["csv_table"])
-
- for item in result["logs"]:
- if item[0] == "INFO":
- logging.info(item[1])
- elif item[0] == "ERROR":
- logging.error(item[1])
- elif item[0] == "DEBUG":
- logging.debug(item[1])
- elif item[0] == "CRITICAL":
- logging.critical(item[1])
- elif item[0] == "WARNING":
- logging.warning(item[1])
-
- del data_queue
-
- # Terminate all workers
- for worker in workers:
- worker.terminate()
- worker.join()
-
- # Write the tables:
- for job_name, csv_table in csv_tables.items():
- file_name = spec.cpta["output-file"] + "-" + job_name + "-trending"
- with open("{0}.csv".format(file_name), 'w') as file_handler:
- file_handler.writelines(csv_table)
-
- txt_table = None
- with open("{0}.csv".format(file_name), 'rb') as csv_file:
- csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
- line_nr = 0
- for row in csv_content:
- if txt_table is None:
- txt_table = prettytable.PrettyTable(row)
- else:
- if line_nr > 1:
- for idx, item in enumerate(row):
- try:
- row[idx] = str(round(float(item) / 1000000, 2))
- except ValueError:
- pass
- try:
- txt_table.add_row(row)
- except Exception as err:
- logging.warning("Error occurred while generating TXT "
- "table:\n{0}".format(err))
- line_nr += 1
- txt_table.align["Build Number:"] = "l"
- with open("{0}.txt".format(file_name), "w") as txt_file:
- txt_file.write(str(txt_table))
-
- # Evaluate result:
- if anomaly_classifications:
- result = "PASS"
- for classification in anomaly_classifications:
- if classification == "regression" or classification == "outlier":
- result = "FAIL"
- break
- else:
- result = "FAIL"
-
- logging.info("Partial results: {0}".format(anomaly_classifications))
- logging.info("Result: {0}".format(result))
-
- return result