diff options
Diffstat (limited to 'resources/tools/presentation/new/generator_plots.py')
-rw-r--r-- | resources/tools/presentation/new/generator_plots.py | 399 |
1 files changed, 399 insertions, 0 deletions
diff --git a/resources/tools/presentation/new/generator_plots.py b/resources/tools/presentation/new/generator_plots.py new file mode 100644 index 0000000000..aaee31f53b --- /dev/null +++ b/resources/tools/presentation/new/generator_plots.py @@ -0,0 +1,399 @@ +# Copyright (c) 2018 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Algorithms to generate plots. +""" + + +import logging +import pandas as pd +import plotly.offline as ploff +import plotly.graph_objs as plgo + +from plotly.exceptions import PlotlyError + +from utils import mean + + +def generate_plots(spec, data): + """Generate all plots specified in the specification file. + + :param spec: Specification read from the specification file. + :param data: Data to process. + :type spec: Specification + :type data: InputData + """ + + logging.info("Generating the plots ...") + for index, plot in enumerate(spec.plots): + try: + logging.info(" Plot nr {0}:".format(index + 1)) + eval(plot["algorithm"])(plot, data) + except NameError as err: + logging.error("Probably algorithm '{alg}' is not defined: {err}". + format(alg=plot["algorithm"], err=repr(err))) + logging.info("Done.") + + +def plot_performance_box(plot, input_data): + """Generate the plot(s) with algorithm: plot_performance_box + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + logging.info(" Generating the plot {0} ...". + format(plot.get("title", ""))) + + # Transform the data + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot.get("title", ""))) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + # Prepare the data for the plot + y_vals = dict() + for job in data: + for build in job: + for test in build: + if y_vals.get(test["parent"], None) is None: + y_vals[test["parent"]] = list() + try: + y_vals[test["parent"]].append(test["throughput"]["value"]) + except (KeyError, TypeError): + y_vals[test["parent"]].append(None) + + # Add None to the lists with missing data + max_len = 0 + for val in y_vals.values(): + if len(val) > max_len: + max_len = len(val) + for key, val in y_vals.items(): + if len(val) < max_len: + val.extend([None for _ in range(max_len - len(val))]) + + # Add plot traces + traces = list() + df = pd.DataFrame(y_vals) + df.head() + for i, col in enumerate(df.columns): + name = "{0}. {1}".format(i + 1, col.lower().replace('-ndrpdrdisc', '')) + traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]), + y=df[col], + name=name, + **plot["traces"])) + + try: + # Create plot + plpl = plgo.Figure(data=traces, layout=plot["layout"]) + + # Export Plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + ploff.plot(plpl, + show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + logging.info(" Done.") + + +def plot_latency_box(plot, input_data): + """Generate the plot(s) with algorithm: plot_latency_box + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + logging.info(" Generating the plot {0} ...". + format(plot.get("title", ""))) + + # Transform the data + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot.get("title", ""))) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + # Prepare the data for the plot + y_tmp_vals = dict() + for job in data: + for build in job: + for test in build: + if y_tmp_vals.get(test["parent"], None) is None: + y_tmp_vals[test["parent"]] = [ + list(), # direction1, min + list(), # direction1, avg + list(), # direction1, max + list(), # direction2, min + list(), # direction2, avg + list() # direction2, max + ] + try: + y_tmp_vals[test["parent"]][0].append( + test["latency"]["direction1"]["50"]["min"]) + y_tmp_vals[test["parent"]][1].append( + test["latency"]["direction1"]["50"]["avg"]) + y_tmp_vals[test["parent"]][2].append( + test["latency"]["direction1"]["50"]["max"]) + y_tmp_vals[test["parent"]][3].append( + test["latency"]["direction2"]["50"]["min"]) + y_tmp_vals[test["parent"]][4].append( + test["latency"]["direction2"]["50"]["avg"]) + y_tmp_vals[test["parent"]][5].append( + test["latency"]["direction2"]["50"]["max"]) + except (KeyError, TypeError): + pass + + y_vals = dict() + for key, values in y_tmp_vals.items(): + y_vals[key] = list() + for val in values: + if val: + average = mean(val) + else: + average = None + y_vals[key].append(average) + y_vals[key].append(average) # Twice for plot.ly + + # Add plot traces + traces = list() + try: + df = pd.DataFrame(y_vals) + df.head() + except ValueError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + for i, col in enumerate(df.columns): + name = "{0}. {1}".format(i + 1, col.lower().replace('-ndrpdrdisc', '')) + traces.append(plgo.Box(x=['TGint1-to-SUT1-to-SUT2-to-TGint2', + 'TGint1-to-SUT1-to-SUT2-to-TGint2', + 'TGint1-to-SUT1-to-SUT2-to-TGint2', + 'TGint1-to-SUT1-to-SUT2-to-TGint2', + 'TGint1-to-SUT1-to-SUT2-to-TGint2', + 'TGint1-to-SUT1-to-SUT2-to-TGint2', + 'TGint2-to-SUT2-to-SUT1-to-TGint1', + 'TGint2-to-SUT2-to-SUT1-to-TGint1', + 'TGint2-to-SUT2-to-SUT1-to-TGint1', + 'TGint2-to-SUT2-to-SUT1-to-TGint1', + 'TGint2-to-SUT2-to-SUT1-to-TGint1', + 'TGint2-to-SUT2-to-SUT1-to-TGint1'], + y=df[col], + name=name, + **plot["traces"])) + + try: + # Create plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + plpl = plgo.Figure(data=traces, layout=plot["layout"]) + + # Export Plot + ploff.plot(plpl, + show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + logging.info(" Done.") + + +def plot_throughput_speedup_analysis(plot, input_data): + """Generate the plot(s) with algorithm: plot_throughput_speedup_analysis + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + logging.info(" Generating the plot {0} ...". + format(plot.get("title", ""))) + + # Transform the data + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot.get("title", ""))) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + throughput = dict() + for job in data: + for build in job: + for test in build: + if throughput.get(test["parent"], None) is None: + throughput[test["parent"]] = {"1": list(), + "2": list(), + "4": list()} + try: + if "1T1C" in test["tags"]: + throughput[test["parent"]]["1"].\ + append(test["throughput"]["value"]) + elif "2T2C" in test["tags"]: + throughput[test["parent"]]["2"]. \ + append(test["throughput"]["value"]) + elif "4T4C" in test["tags"]: + throughput[test["parent"]]["4"]. \ + append(test["throughput"]["value"]) + except (KeyError, TypeError): + pass + + if not throughput: + logging.warning("No data for the plot '{}'". + format(plot.get("title", ""))) + return + + for test_name, test_vals in throughput.items(): + for key, test_val in test_vals.items(): + if test_val: + throughput[test_name][key] = sum(test_val) / len(test_val) + + names = ['1 core', '2 cores', '4 cores'] + x_vals = list() + y_vals_1 = list() + y_vals_2 = list() + y_vals_4 = list() + + for test_name, test_vals in throughput.items(): + if test_vals["1"]: + x_vals.append("-".join(test_name.split('-')[1:-1])) + y_vals_1.append(1) + if test_vals["2"]: + y_vals_2.append( + round(float(test_vals["2"]) / float(test_vals["1"]), 2)) + else: + y_vals_2.append(None) + if test_vals["4"]: + y_vals_4.append( + round(float(test_vals["4"]) / float(test_vals["1"]), 2)) + else: + y_vals_4.append(None) + + y_vals = [y_vals_1, y_vals_2, y_vals_4] + + y_vals_zipped = zip(names, y_vals) + traces = list() + for val in y_vals_zipped: + traces.append(plgo.Bar(x=x_vals, + y=val[1], + name=val[0])) + + try: + # Create plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + plpl = plgo.Figure(data=traces, layout=plot["layout"]) + + # Export Plot + ploff.plot(plpl, + show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + logging.info(" Done.") + + +def plot_http_server_performance_box(plot, input_data): + """Generate the plot(s) with algorithm: plot_http_server_performance_box + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + logging.info(" Generating the plot {0} ...". + format(plot.get("title", ""))) + + # Transform the data + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot.get("title", ""))) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + # Prepare the data for the plot + y_vals = dict() + for job in data: + for build in job: + for test in build: + if y_vals.get(test["name"], None) is None: + y_vals[test["name"]] = list() + try: + y_vals[test["name"]].append(test["result"]["value"]) + except (KeyError, TypeError): + y_vals[test["name"]].append(None) + + # Add None to the lists with missing data + max_len = 0 + for val in y_vals.values(): + if len(val) > max_len: + max_len = len(val) + for key, val in y_vals.items(): + if len(val) < max_len: + val.extend([None for _ in range(max_len - len(val))]) + + # Add plot traces + traces = list() + df = pd.DataFrame(y_vals) + df.head() + for i, col in enumerate(df.columns): + name = "{0}. {1}".format(i + 1, col.lower().replace('-cps', ''). + replace('-rps', '')) + traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]), + y=df[col], + name=name, + **plot["traces"])) + try: + # Create plot + plpl = plgo.Figure(data=traces, layout=plot["layout"]) + + # Export Plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + ploff.plot(plpl, + show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + logging.info(" Done.") |