diff options
Diffstat (limited to 'resources/tools/presentation/new/generator_plots.py')
-rw-r--r-- | resources/tools/presentation/new/generator_plots.py | 399 |
1 files changed, 0 insertions, 399 deletions
diff --git a/resources/tools/presentation/new/generator_plots.py b/resources/tools/presentation/new/generator_plots.py deleted file mode 100644 index aaee31f53b..0000000000 --- a/resources/tools/presentation/new/generator_plots.py +++ /dev/null @@ -1,399 +0,0 @@ -# Copyright (c) 2018 Cisco and/or its affiliates. -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at: -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Algorithms to generate plots. -""" - - -import logging -import pandas as pd -import plotly.offline as ploff -import plotly.graph_objs as plgo - -from plotly.exceptions import PlotlyError - -from utils import mean - - -def generate_plots(spec, data): - """Generate all plots specified in the specification file. - - :param spec: Specification read from the specification file. - :param data: Data to process. - :type spec: Specification - :type data: InputData - """ - - logging.info("Generating the plots ...") - for index, plot in enumerate(spec.plots): - try: - logging.info(" Plot nr {0}:".format(index + 1)) - eval(plot["algorithm"])(plot, data) - except NameError as err: - logging.error("Probably algorithm '{alg}' is not defined: {err}". - format(alg=plot["algorithm"], err=repr(err))) - logging.info("Done.") - - -def plot_performance_box(plot, input_data): - """Generate the plot(s) with algorithm: plot_performance_box - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - logging.info(" Generating the plot {0} ...". - format(plot.get("title", ""))) - - # Transform the data - logging.info(" Creating the data set for the {0} '{1}'.". - format(plot.get("type", ""), plot.get("title", ""))) - data = input_data.filter_data(plot) - if data is None: - logging.error("No data.") - return - - # Prepare the data for the plot - y_vals = dict() - for job in data: - for build in job: - for test in build: - if y_vals.get(test["parent"], None) is None: - y_vals[test["parent"]] = list() - try: - y_vals[test["parent"]].append(test["throughput"]["value"]) - except (KeyError, TypeError): - y_vals[test["parent"]].append(None) - - # Add None to the lists with missing data - max_len = 0 - for val in y_vals.values(): - if len(val) > max_len: - max_len = len(val) - for key, val in y_vals.items(): - if len(val) < max_len: - val.extend([None for _ in range(max_len - len(val))]) - - # Add plot traces - traces = list() - df = pd.DataFrame(y_vals) - df.head() - for i, col in enumerate(df.columns): - name = "{0}. {1}".format(i + 1, col.lower().replace('-ndrpdrdisc', '')) - traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]), - y=df[col], - name=name, - **plot["traces"])) - - try: - # Create plot - plpl = plgo.Figure(data=traces, layout=plot["layout"]) - - # Export Plot - logging.info(" Writing file '{0}{1}'.". - format(plot["output-file"], plot["output-file-type"])) - ploff.plot(plpl, - show_link=False, auto_open=False, - filename='{0}{1}'.format(plot["output-file"], - plot["output-file-type"])) - except PlotlyError as err: - logging.error(" Finished with error: {}". - format(str(err).replace("\n", " "))) - return - - logging.info(" Done.") - - -def plot_latency_box(plot, input_data): - """Generate the plot(s) with algorithm: plot_latency_box - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - logging.info(" Generating the plot {0} ...". - format(plot.get("title", ""))) - - # Transform the data - logging.info(" Creating the data set for the {0} '{1}'.". - format(plot.get("type", ""), plot.get("title", ""))) - data = input_data.filter_data(plot) - if data is None: - logging.error("No data.") - return - - # Prepare the data for the plot - y_tmp_vals = dict() - for job in data: - for build in job: - for test in build: - if y_tmp_vals.get(test["parent"], None) is None: - y_tmp_vals[test["parent"]] = [ - list(), # direction1, min - list(), # direction1, avg - list(), # direction1, max - list(), # direction2, min - list(), # direction2, avg - list() # direction2, max - ] - try: - y_tmp_vals[test["parent"]][0].append( - test["latency"]["direction1"]["50"]["min"]) - y_tmp_vals[test["parent"]][1].append( - test["latency"]["direction1"]["50"]["avg"]) - y_tmp_vals[test["parent"]][2].append( - test["latency"]["direction1"]["50"]["max"]) - y_tmp_vals[test["parent"]][3].append( - test["latency"]["direction2"]["50"]["min"]) - y_tmp_vals[test["parent"]][4].append( - test["latency"]["direction2"]["50"]["avg"]) - y_tmp_vals[test["parent"]][5].append( - test["latency"]["direction2"]["50"]["max"]) - except (KeyError, TypeError): - pass - - y_vals = dict() - for key, values in y_tmp_vals.items(): - y_vals[key] = list() - for val in values: - if val: - average = mean(val) - else: - average = None - y_vals[key].append(average) - y_vals[key].append(average) # Twice for plot.ly - - # Add plot traces - traces = list() - try: - df = pd.DataFrame(y_vals) - df.head() - except ValueError as err: - logging.error(" Finished with error: {}". - format(str(err).replace("\n", " "))) - return - - for i, col in enumerate(df.columns): - name = "{0}. {1}".format(i + 1, col.lower().replace('-ndrpdrdisc', '')) - traces.append(plgo.Box(x=['TGint1-to-SUT1-to-SUT2-to-TGint2', - 'TGint1-to-SUT1-to-SUT2-to-TGint2', - 'TGint1-to-SUT1-to-SUT2-to-TGint2', - 'TGint1-to-SUT1-to-SUT2-to-TGint2', - 'TGint1-to-SUT1-to-SUT2-to-TGint2', - 'TGint1-to-SUT1-to-SUT2-to-TGint2', - 'TGint2-to-SUT2-to-SUT1-to-TGint1', - 'TGint2-to-SUT2-to-SUT1-to-TGint1', - 'TGint2-to-SUT2-to-SUT1-to-TGint1', - 'TGint2-to-SUT2-to-SUT1-to-TGint1', - 'TGint2-to-SUT2-to-SUT1-to-TGint1', - 'TGint2-to-SUT2-to-SUT1-to-TGint1'], - y=df[col], - name=name, - **plot["traces"])) - - try: - # Create plot - logging.info(" Writing file '{0}{1}'.". - format(plot["output-file"], plot["output-file-type"])) - plpl = plgo.Figure(data=traces, layout=plot["layout"]) - - # Export Plot - ploff.plot(plpl, - show_link=False, auto_open=False, - filename='{0}{1}'.format(plot["output-file"], - plot["output-file-type"])) - except PlotlyError as err: - logging.error(" Finished with error: {}". - format(str(err).replace("\n", " "))) - return - - logging.info(" Done.") - - -def plot_throughput_speedup_analysis(plot, input_data): - """Generate the plot(s) with algorithm: plot_throughput_speedup_analysis - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - logging.info(" Generating the plot {0} ...". - format(plot.get("title", ""))) - - # Transform the data - logging.info(" Creating the data set for the {0} '{1}'.". - format(plot.get("type", ""), plot.get("title", ""))) - data = input_data.filter_data(plot) - if data is None: - logging.error("No data.") - return - - throughput = dict() - for job in data: - for build in job: - for test in build: - if throughput.get(test["parent"], None) is None: - throughput[test["parent"]] = {"1": list(), - "2": list(), - "4": list()} - try: - if "1T1C" in test["tags"]: - throughput[test["parent"]]["1"].\ - append(test["throughput"]["value"]) - elif "2T2C" in test["tags"]: - throughput[test["parent"]]["2"]. \ - append(test["throughput"]["value"]) - elif "4T4C" in test["tags"]: - throughput[test["parent"]]["4"]. \ - append(test["throughput"]["value"]) - except (KeyError, TypeError): - pass - - if not throughput: - logging.warning("No data for the plot '{}'". - format(plot.get("title", ""))) - return - - for test_name, test_vals in throughput.items(): - for key, test_val in test_vals.items(): - if test_val: - throughput[test_name][key] = sum(test_val) / len(test_val) - - names = ['1 core', '2 cores', '4 cores'] - x_vals = list() - y_vals_1 = list() - y_vals_2 = list() - y_vals_4 = list() - - for test_name, test_vals in throughput.items(): - if test_vals["1"]: - x_vals.append("-".join(test_name.split('-')[1:-1])) - y_vals_1.append(1) - if test_vals["2"]: - y_vals_2.append( - round(float(test_vals["2"]) / float(test_vals["1"]), 2)) - else: - y_vals_2.append(None) - if test_vals["4"]: - y_vals_4.append( - round(float(test_vals["4"]) / float(test_vals["1"]), 2)) - else: - y_vals_4.append(None) - - y_vals = [y_vals_1, y_vals_2, y_vals_4] - - y_vals_zipped = zip(names, y_vals) - traces = list() - for val in y_vals_zipped: - traces.append(plgo.Bar(x=x_vals, - y=val[1], - name=val[0])) - - try: - # Create plot - logging.info(" Writing file '{0}{1}'.". - format(plot["output-file"], plot["output-file-type"])) - plpl = plgo.Figure(data=traces, layout=plot["layout"]) - - # Export Plot - ploff.plot(plpl, - show_link=False, auto_open=False, - filename='{0}{1}'.format(plot["output-file"], - plot["output-file-type"])) - except PlotlyError as err: - logging.error(" Finished with error: {}". - format(str(err).replace("\n", " "))) - return - - logging.info(" Done.") - - -def plot_http_server_performance_box(plot, input_data): - """Generate the plot(s) with algorithm: plot_http_server_performance_box - specified in the specification file. - - :param plot: Plot to generate. - :param input_data: Data to process. - :type plot: pandas.Series - :type input_data: InputData - """ - - logging.info(" Generating the plot {0} ...". - format(plot.get("title", ""))) - - # Transform the data - logging.info(" Creating the data set for the {0} '{1}'.". - format(plot.get("type", ""), plot.get("title", ""))) - data = input_data.filter_data(plot) - if data is None: - logging.error("No data.") - return - - # Prepare the data for the plot - y_vals = dict() - for job in data: - for build in job: - for test in build: - if y_vals.get(test["name"], None) is None: - y_vals[test["name"]] = list() - try: - y_vals[test["name"]].append(test["result"]["value"]) - except (KeyError, TypeError): - y_vals[test["name"]].append(None) - - # Add None to the lists with missing data - max_len = 0 - for val in y_vals.values(): - if len(val) > max_len: - max_len = len(val) - for key, val in y_vals.items(): - if len(val) < max_len: - val.extend([None for _ in range(max_len - len(val))]) - - # Add plot traces - traces = list() - df = pd.DataFrame(y_vals) - df.head() - for i, col in enumerate(df.columns): - name = "{0}. {1}".format(i + 1, col.lower().replace('-cps', ''). - replace('-rps', '')) - traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]), - y=df[col], - name=name, - **plot["traces"])) - try: - # Create plot - plpl = plgo.Figure(data=traces, layout=plot["layout"]) - - # Export Plot - logging.info(" Writing file '{0}{1}'.". - format(plot["output-file"], plot["output-file-type"])) - ploff.plot(plpl, - show_link=False, auto_open=False, - filename='{0}{1}'.format(plot["output-file"], - plot["output-file-type"])) - except PlotlyError as err: - logging.error(" Finished with error: {}". - format(str(err).replace("\n", " "))) - return - - logging.info(" Done.") |