aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/new/utils.py
diff options
context:
space:
mode:
Diffstat (limited to 'resources/tools/presentation/new/utils.py')
-rw-r--r--resources/tools/presentation/new/utils.py317
1 files changed, 0 insertions, 317 deletions
diff --git a/resources/tools/presentation/new/utils.py b/resources/tools/presentation/new/utils.py
deleted file mode 100644
index a2aa0dc071..0000000000
--- a/resources/tools/presentation/new/utils.py
+++ /dev/null
@@ -1,317 +0,0 @@
-# Copyright (c) 2018 Cisco and/or its affiliates.
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at:
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""General purpose utilities.
-"""
-
-import multiprocessing
-import subprocess
-import numpy as np
-import logging
-import csv
-import prettytable
-
-from os import walk, makedirs, environ
-from os.path import join, isdir
-from shutil import move, Error
-from math import sqrt
-
-from errors import PresentationError
-from jumpavg.BitCountingClassifier import BitCountingClassifier
-
-
-def mean(items):
- """Calculate mean value from the items.
-
- :param items: Mean value is calculated from these items.
- :type items: list
- :returns: MEan value.
- :rtype: float
- """
-
- return float(sum(items)) / len(items)
-
-
-def stdev(items):
- """Calculate stdev from the items.
-
- :param items: Stdev is calculated from these items.
- :type items: list
- :returns: Stdev.
- :rtype: float
- """
-
- avg = mean(items)
- variance = [(x - avg) ** 2 for x in items]
- stddev = sqrt(mean(variance))
- return stddev
-
-
-def relative_change(nr1, nr2):
- """Compute relative change of two values.
-
- :param nr1: The first number.
- :param nr2: The second number.
- :type nr1: float
- :type nr2: float
- :returns: Relative change of nr1.
- :rtype: float
- """
-
- return float(((nr2 - nr1) / nr1) * 100)
-
-
-def get_files(path, extension=None, full_path=True):
- """Generates the list of files to process.
-
- :param path: Path to files.
- :param extension: Extension of files to process. If it is the empty string,
- all files will be processed.
- :param full_path: If True, the files with full path are generated.
- :type path: str
- :type extension: str
- :type full_path: bool
- :returns: List of files to process.
- :rtype: list
- """
-
- file_list = list()
- for root, _, files in walk(path):
- for filename in files:
- if extension:
- if filename.endswith(extension):
- if full_path:
- file_list.append(join(root, filename))
- else:
- file_list.append(filename)
- else:
- file_list.append(join(root, filename))
-
- return file_list
-
-
-def get_rst_title_char(level):
- """Return character used for the given title level in rst files.
-
- :param level: Level of the title.
- :type: int
- :returns: Character used for the given title level in rst files.
- :rtype: str
- """
- chars = ('=', '-', '`', "'", '.', '~', '*', '+', '^')
- if level < len(chars):
- return chars[level]
- else:
- return chars[-1]
-
-
-def execute_command(cmd):
- """Execute the command in a subprocess and log the stdout and stderr.
-
- :param cmd: Command to execute.
- :type cmd: str
- :returns: Return code of the executed command.
- :rtype: int
- """
-
- env = environ.copy()
- proc = subprocess.Popen(
- [cmd],
- stdout=subprocess.PIPE,
- stderr=subprocess.PIPE,
- shell=True,
- env=env)
-
- stdout, stderr = proc.communicate()
-
- if stdout:
- logging.info(stdout)
- if stderr:
- logging.info(stderr)
-
- if proc.returncode != 0:
- logging.error(" Command execution failed.")
- return proc.returncode, stdout, stderr
-
-
-def get_last_successful_build_number(jenkins_url, job_name):
- """Get the number of the last successful build of the given job.
-
- :param jenkins_url: Jenkins URL.
- :param job_name: Job name.
- :type jenkins_url: str
- :type job_name: str
- :returns: The build number as a string.
- :rtype: str
- """
-
- url = "{}/{}/lastSuccessfulBuild/buildNumber".format(jenkins_url, job_name)
- cmd = "wget -qO- {url}".format(url=url)
-
- return execute_command(cmd)
-
-
-def get_last_completed_build_number(jenkins_url, job_name):
- """Get the number of the last completed build of the given job.
-
- :param jenkins_url: Jenkins URL.
- :param job_name: Job name.
- :type jenkins_url: str
- :type job_name: str
- :returns: The build number as a string.
- :rtype: str
- """
-
- url = "{}/{}/lastCompletedBuild/buildNumber".format(jenkins_url, job_name)
- cmd = "wget -qO- {url}".format(url=url)
-
- return execute_command(cmd)
-
-
-def archive_input_data(spec):
- """Archive the report.
-
- :param spec: Specification read from the specification file.
- :type spec: Specification
- :raises PresentationError: If it is not possible to archive the input data.
- """
-
- logging.info(" Archiving the input data files ...")
-
- extension = spec.input["file-format"]
- data_files = get_files(spec.environment["paths"]["DIR[WORKING,DATA]"],
- extension=extension)
- dst = spec.environment["paths"]["DIR[STATIC,ARCH]"]
- logging.info(" Destination: {0}".format(dst))
-
- try:
- if not isdir(dst):
- makedirs(dst)
-
- for data_file in data_files:
- logging.info(" Moving the file: {0} ...".format(data_file))
- move(data_file, dst)
-
- except (Error, OSError) as err:
- raise PresentationError("Not possible to archive the input data.",
- str(err))
-
- logging.info(" Done.")
-
-
-def classify_anomalies(data):
- """Process the data and return anomalies and trending values.
-
- Gather data into groups with average as trend value.
- Decorate values within groups to be normal,
- the first value of changed average as a regression, or a progression.
-
- :param data: Full data set with unavailable samples replaced by nan.
- :type data: pandas.Series
- :returns: Classification and trend values
- :rtype: 2-tuple, list of strings and list of floats
- """
- # Nan mean something went wrong.
- # Use 0.0 to cause that being reported as a severe regression.
- bare_data = [0.0 if np.isnan(sample) else sample
- for _, sample in data.iteritems()]
- # TODO: Put analogous iterator into jumpavg library.
- groups = BitCountingClassifier().classify(bare_data)
- groups.reverse() # Just to use .pop() for FIFO.
- classification = []
- avgs = []
- active_group = None
- values_left = 0
- avg = 0.0
- for _, sample in data.iteritems():
- if np.isnan(sample):
- classification.append("outlier")
- avgs.append(sample)
- continue
- if values_left < 1 or active_group is None:
- values_left = 0
- while values_left < 1: # Ignore empty groups (should not happen).
- active_group = groups.pop()
- values_left = len(active_group.values)
- avg = active_group.metadata.avg
- classification.append(active_group.metadata.classification)
- avgs.append(avg)
- values_left -= 1
- continue
- classification.append("normal")
- avgs.append(avg)
- values_left -= 1
- return classification, avgs
-
-
-def convert_csv_to_pretty_txt(csv_file, txt_file):
- """Convert the given csv table to pretty text table.
-
- :param csv_file: The path to the input csv file.
- :param txt_file: The path to the output pretty text file.
- :type csv_file: str
- :type txt_file: str
- """
-
- txt_table = None
- with open(csv_file, 'rb') as csv_file:
- csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
- for row in csv_content:
- if txt_table is None:
- txt_table = prettytable.PrettyTable(row)
- else:
- txt_table.add_row(row)
- txt_table.align["Test case"] = "l"
- if txt_table:
- with open(txt_file, "w") as txt_file:
- txt_file.write(str(txt_table))
-
-
-class Worker(multiprocessing.Process):
- """Worker class used to process tasks in separate parallel processes.
- """
-
- def __init__(self, work_queue, data_queue, func):
- """Initialization.
-
- :param work_queue: Queue with items to process.
- :param data_queue: Shared memory between processes. Queue which keeps
- the result data. This data is then read by the main process and used
- in further processing.
- :param func: Function which is executed by the worker.
- :type work_queue: multiprocessing.JoinableQueue
- :type data_queue: multiprocessing.Manager().Queue()
- :type func: Callable object
- """
- super(Worker, self).__init__()
- self._work_queue = work_queue
- self._data_queue = data_queue
- self._func = func
-
- def run(self):
- """Method representing the process's activity.
- """
-
- while True:
- try:
- self.process(self._work_queue.get())
- finally:
- self._work_queue.task_done()
-
- def process(self, item_to_process):
- """Method executed by the runner.
-
- :param item_to_process: Data to be processed by the function.
- :type item_to_process: tuple
- """
- self._func(self.pid, self._data_queue, *item_to_process)