1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
# CSIT - Continuous System Integration Testing
1. [Architecture](#architecture)
1. [Directory Structure](#directory-structure)
1. [Tests](#tests)
1. [Keywords](#keywords)
1. [Other Resources](#other-resources)
1. [Quickstart](#quick-start)
1. [Vagrant](#vagrant)
1. [Physical Testbed](#physical-testbed)
1. [Report](#report)
1. [Trending](#trending)
1. [Code Documentation](#code-documentation)
1. [Coding Guidelines](#coding-guidelines)
## Architecture
FD.io CSIT system design needs to meet continuously expanding requirements of
FD.io projects including VPP, related sub-systems (e.g. plugin applications,
DPDK drivers) and FD.io applications (e.g. DPDK applications), as well as
growing number of compute platforms running those applications. With CSIT
project scope and charter including both FD.io continuous testing AND
performance trending/comparisons, those evolving requirements further amplify
the need for CSIT framework modularity, flexibility and usability.
CSIT follows a hierarchical system design with SUTs and DUTs at the bottom level
of the hierarchy, presentation level at the top level and a number of functional
layers in-between. The current CSIT system design including CSIT framework is
depicted in the figure below.
![csit design](docs/report/csit_framework_documentation/csit_design_picture.svg "CSIT architecture")
A brief bottom-up description is provided here:
1. SUTs, DUTs, TGs
- SUTs - Systems Under Test;
- DUTs - Devices Under Test;
- TGs - Traffic Generators;
1. Level-1 libraries - Robot and Python
- Lowest level CSIT libraries abstracting underlying test environment, SUT,
DUT and TG specifics;
- Used commonly across multiple L2 KWs;
- Performance and functional tests:
- L1 KWs (KeyWords) are implemented as RF libraries and Python
libraries;
- Performance TG L1 KWs:
- All L1 KWs are implemented as Python libraries:
- Support for TRex only today;
- Performance data plane traffic profiles:
- TG-specific stream profiles provide full control of:
- Packet definition – layers, MACs, IPs, ports, combinations thereof
e.g. IPs and UDP ports;
- Stream definitions - different streams can run together, delayed,
one after each other;
- Stream profiles are independent of CSIT framework and can be used
in any T-rex setup, can be sent anywhere to repeat tests with
exactly the same setup;
- Easily extensible – one can create a new stream profile that meets
tests requirements;
- Same stream profile can be used for different tests with the same
traffic needs;
- Functional data plane traffic scripts:
- Scapy specific traffic scripts;
1. Level-2 libraries - Robot resource files
- Higher level CSIT libraries abstracting required functions for executing
tests;
- L2 KWs are classified into the following functional categories:
- Configuration, test, verification, state report;
- Suite setup, suite teardown;
- Test setup, test teardown;
1. Tests - Robot
- Test suites with test cases;
- Performance tests using physical testbed environment:
- VPP;
- DPDK-Testpmd;
- DPDK-L3Fwd;
- VPP Container K8s orchestrated topologies;
- Tools:
- Documentation generator;
- Report generator;
- Testbed environment setup ansible playbooks;
- Operational debugging scripts;
## Directory Structure
### Tests
```
.
└── tests
├── dpdk
│ ├── dpdk_scripts # DPDK helper scripts
│ └── perf # DPDK performance tests
└── vpp
├── device # VPP device tests
├── func # VPP functional VIRL tests
└── perf # VPP performance tests
```
### Keywords
```
.
resources
└── libraries
├── bash
│ ├── config
│ ├── entry # Main bootstrap entry directory
│ ├── function # Bootstrap function library
│ └── shell # Various functions
├── python # Python L1 KWs
└── robot # Robot Framework L2 KWs
```
### Other Resources
```
.
├── docs # Main documentaion
├── PyPI # PyPI packages provided by CSIT
│ ├── jumpavg
│ └── MLRsearch
├── resources
│ ├── templates # Templates (vpp_api_test, kubernetes, ...)
│ ├── test_data # Robot Test configuration
│ ├── tools
│ │ ├── disk-image-builder # Utilities for building (DCR, VM) images
│ │ ├── doc_gen # Code documentation generator
│ │ ├── papi # PAPI driver
│ │ ├── presentation # Report generator
│ │ ├── scripts # Various tools
│ │ ├── testbed-setup # Physical testbed setup scripts
│ │ ├── topology # Helper scripts for topology manipulation
│ │ ├── trex # TRex driver
│ │ ├── vagrant # VPP device vagrant environment
│ │ └── wrk # WRK driver
│ ├── topology_schemas
│ ├── traffic_profiles # Performance tests traffic profiles
│ │ ├── trex
│ │ └── wrk
│ └── traffic_scripts # Functional tests traffic profiles
│ ├── dhcp
│ └── lisp
└── topologies # Linux Foundation topology files
├── available
└── enabled
```
## Quickstart
### Vagrant
[Vagrant environment preparation](docs/testing_in_vagrant.rst) documentaion is
describing local VPP Device functional testing.
### Physical Testbed
[Physical testbed preparation](resources/tools/testbed-setup/README.rst)
documentation is describing PXE and Ansible setup process. All the software
requirements for running Performance Teste are part of Ansible playbooks.
## Report
[CSIT Report](https://docs.fd.io/csit/master/report/).
## Trending
[CSIT Trending](https://docs.fd.io/csit/master/trending/).
## Code Documentation
[CSIT Code Documentation](https://docs.fd.io/csit/master/doc/).
## Coding Guidelines
If you are interested in contributing, please see the
[coding guidelines](docs/test_code_guidelines.rst).
|