aboutsummaryrefslogtreecommitdiffstats
path: root/README
blob: b14834f07b69aa6fb9eb0bb575ea9e15b1034895 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# STEPS TO START DEVELOPING TESTS LOCALLY
 - install virtualenv
 - generate environment using virtualenv:
    # cd $ROOT
    # virtualenv env
    # source env/bin/activate
 - install python requirements for this project by executing:
    # pip install -r requirements.txt
 - make sure user mentioned in topology.py has NOPASSWD sudo access to
    vpp_api_test

Note:
You can alternatively create the virtualenv with the flag --system-site-packages
It give access to the global site-packages dir to the virtual environment, which
is faster, but you may end up with some conflicts.


 Done.

# STEPS TO START THE TESTS
export PYTHONPATH=.

# create topology, edit ip addresses
cp topologies/available/3_node_hw_topo1.yaml.example topologies/available/topology.yaml
ln -s ../available/topology.yaml topologies/enabled/topology.yaml

pybot -L TRACE -v TOPOLOGY_PATH:topologies/enabled/topology.yaml tests
 or
./main.py -t topologies/enabled/topology.yaml -i test_tag
 or
./main.py


# Dependencies on Nodes

 - virtualenv
 - pip
 - python2.7
 - python-dev package
 - gcc (pycrypto)
 - libpcap-devel (pypcap)

``` bash
# on fedora26
yum install -y python-virtualenv python-pip python python-devel libpcap-devel gcc

# if you have the following error during pycrypto
# gcc: error: /usr/lib/rpm/redhat/redhat-hardened-cc1 No such file or directory
yum install -y redhat-rpm-config
```
='n563' href='#n563'>563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * ip/ip4_fib.h: ip4 mtrie fib
 *
 * Copyright (c) 2012 Eliot Dresselhaus
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include <vnet/ip/ip.h>
#include <vnet/ip/ip4_mtrie.h>
#include <vnet/fib/ip4_fib.h>


/**
 * Global pool of IPv4 8bit PLYs
 */
ip4_fib_mtrie_8_ply_t *ip4_ply_pool;

always_inline u32
ip4_fib_mtrie_leaf_is_non_empty (ip4_fib_mtrie_8_ply_t * p, u8 dst_byte)
{
  /*
   * It's 'non-empty' if the length of the leaf stored is greater than the
   * length of a leaf in the covering ply. i.e. the leaf is more specific
   * than it's would be cover in the covering ply
   */
  if (p->dst_address_bits_of_leaves[dst_byte] > p->dst_address_bits_base)
    return (1);
  return (0);
}

always_inline ip4_fib_mtrie_leaf_t
ip4_fib_mtrie_leaf_set_adj_index (u32 adj_index)
{
  ip4_fib_mtrie_leaf_t l;
  l = 1 + 2 * adj_index;
  ASSERT (ip4_fib_mtrie_leaf_get_adj_index (l) == adj_index);
  return l;
}

always_inline u32
ip4_fib_mtrie_leaf_is_next_ply (ip4_fib_mtrie_leaf_t n)
{
  return (n & 1) == 0;
}

always_inline u32
ip4_fib_mtrie_leaf_get_next_ply_index (ip4_fib_mtrie_leaf_t n)
{
  ASSERT (ip4_fib_mtrie_leaf_is_next_ply (n));
  return n >> 1;
}

always_inline ip4_fib_mtrie_leaf_t
ip4_fib_mtrie_leaf_set_next_ply_index (u32 i)
{
  ip4_fib_mtrie_leaf_t l;
  l = 0 + 2 * i;
  ASSERT (ip4_fib_mtrie_leaf_get_next_ply_index (l) == i);
  return l;
}

#ifndef __ALTIVEC__
#define PLY_X4_SPLAT_INIT(init_x4, init) \
  init_x4 = u32x4_splat (init);
#else
#define PLY_X4_SPLAT_INIT(init_x4, init)                                \
{                                                                       \
  u32x4_union_t y;                                                      \
  y.as_u32[0] = init;                                                   \
  y.as_u32[1] = init;                                                   \
  y.as_u32[2] = init;                                                   \
  y.as_u32[3] = init;                                                   \
  init_x4 = y.as_u32x4;                                                 \
}
#endif

#ifdef CLIB_HAVE_VEC128
#define PLY_INIT_LEAVES(p)                                              \
{                                                                       \
    u32x4 *l, init_x4;                                                  \
                                                                        \
    PLY_X4_SPLAT_INIT(init_x4, init);                                   \
    for (l = p->leaves_as_u32x4;                                        \
	 l < p->leaves_as_u32x4 + ARRAY_LEN (p->leaves_as_u32x4);       \
         l += 4)                                                        \
      {                                                                 \
	l[0] = init_x4;                                                 \
	l[1] = init_x4;                                                 \
	l[2] = init_x4;                                                 \
	l[3] = init_x4;                                                 \
      }                                                                 \
}
#else
#define PLY_INIT_LEAVES(p)                                              \
{                                                                       \
  u32 *l;                                                               \
                                                                        \
  for (l = p->leaves; l < p->leaves + ARRAY_LEN (p->leaves); l += 4)    \
    {                                                                   \
      l[0] = init;                                                      \
      l[1] = init;                                                      \
      l[2] = init;                                                      \
      l[3] = init;                                                      \
      }                                                                 \
}
#endif

#define PLY_INIT(p, init, prefix_len, ply_base_len)                     \
{                                                                       \
  /*                                                                    \
   * A leaf is 'empty' if it represents a leaf from the covering PLY    \
   * i.e. if the prefix length of the leaf is less than or equal to     \
   * the prefix length of the PLY                                       \
   */                                                                   \
  p->n_non_empty_leafs = (prefix_len > ply_base_len ?                   \
			  ARRAY_LEN (p->leaves) : 0);                   \
  clib_memset (p->dst_address_bits_of_leaves, prefix_len,                    \
	  sizeof (p->dst_address_bits_of_leaves));                      \
  p->dst_address_bits_base = ply_base_len;                              \
                                                                        \
  /* Initialize leaves. */                                              \
  PLY_INIT_LEAVES(p);                                                   \
}

static void
ply_8_init (ip4_fib_mtrie_8_ply_t * p,
	    ip4_fib_mtrie_leaf_t init, uword prefix_len, u32 ply_base_len)
{
  PLY_INIT (p, init, prefix_len, ply_base_len);
}

static void
ply_16_init (ip4_fib_mtrie_16_ply_t * p,
	     ip4_fib_mtrie_leaf_t init, uword prefix_len)
{
  clib_memset (p->dst_address_bits_of_leaves, prefix_len,
	       sizeof (p->dst_address_bits_of_leaves));
  PLY_INIT_LEAVES (p);
}

static ip4_fib_mtrie_leaf_t
ply_create (ip4_fib_mtrie_t * m,
	    ip4_fib_mtrie_leaf_t init_leaf,
	    u32 leaf_prefix_len, u32 ply_base_len)
{
  ip4_fib_mtrie_8_ply_t *p;
  void *old_heap;
  /* Get cache aligned ply. */

  old_heap = clib_mem_set_heap (ip4_main.mtrie_mheap);
  pool_get_aligned (ip4_ply_pool, p, CLIB_CACHE_LINE_BYTES);
  clib_mem_set_heap (old_heap);

  ply_8_init (p, init_leaf, leaf_prefix_len, ply_base_len);
  return ip4_fib_mtrie_leaf_set_next_ply_index (p - ip4_ply_pool);
}

always_inline ip4_fib_mtrie_8_ply_t *
get_next_ply_for_leaf (ip4_fib_mtrie_t * m, ip4_fib_mtrie_leaf_t l)
{
  uword n = ip4_fib_mtrie_leaf_get_next_ply_index (l);

  return pool_elt_at_index (ip4_ply_pool, n);
}

void
ip4_mtrie_free (ip4_fib_mtrie_t * m)
{
  /* the root ply is embedded so there is nothing to do,
   * the assumption being that the IP4 FIB table has emptied the trie
   * before deletion.
   */
#if CLIB_DEBUG > 0
  int i;
  for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++)
    {
      ASSERT (!ip4_fib_mtrie_leaf_is_next_ply (m->root_ply.leaves[i]));
    }
#endif
}

void
ip4_mtrie_init (ip4_fib_mtrie_t * m)
{
  ply_16_init (&m->root_ply, IP4_FIB_MTRIE_LEAF_EMPTY, 0);
}

typedef struct
{
  ip4_address_t dst_address;
  u32 dst_address_length;
  u32 adj_index;
  u32 cover_address_length;
  u32 cover_adj_index;
} ip4_fib_mtrie_set_unset_leaf_args_t;

static void
set_ply_with_more_specific_leaf (ip4_fib_mtrie_t * m,
				 ip4_fib_mtrie_8_ply_t * ply,
				 ip4_fib_mtrie_leaf_t new_leaf,
				 uword new_leaf_dst_address_bits)
{
  ip4_fib_mtrie_leaf_t old_leaf;
  uword i;

  ASSERT (ip4_fib_mtrie_leaf_is_terminal (new_leaf));

  for (i = 0; i < ARRAY_LEN (ply->leaves); i++)
    {
      old_leaf = ply->leaves[i];

      /* Recurse into sub plies. */
      if (!ip4_fib_mtrie_leaf_is_terminal (old_leaf))
	{
	  ip4_fib_mtrie_8_ply_t *sub_ply =
	    get_next_ply_for_leaf (m, old_leaf);
	  set_ply_with_more_specific_leaf (m, sub_ply, new_leaf,
					   new_leaf_dst_address_bits);
	}

      /* Replace less specific terminal leaves with new leaf. */
      else if (new_leaf_dst_address_bits >=
	       ply->dst_address_bits_of_leaves[i])
	{
	  clib_atomic_cmp_and_swap (&ply->leaves[i], old_leaf, new_leaf);
	  ASSERT (ply->leaves[i] == new_leaf);
	  ply->dst_address_bits_of_leaves[i] = new_leaf_dst_address_bits;
	  ply->n_non_empty_leafs += ip4_fib_mtrie_leaf_is_non_empty (ply, i);
	}
    }
}

static void
set_leaf (ip4_fib_mtrie_t * m,
	  const ip4_fib_mtrie_set_unset_leaf_args_t * a,
	  u32 old_ply_index, u32 dst_address_byte_index)
{
  ip4_fib_mtrie_leaf_t old_leaf, new_leaf;
  i32 n_dst_bits_next_plies;
  u8 dst_byte;
  ip4_fib_mtrie_8_ply_t *old_ply;

  old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index);

  ASSERT (a->dst_address_length <= 32);
  ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8));

  /* how many bits of the destination address are in the next PLY */
  n_dst_bits_next_plies =
    a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1);

  dst_byte = a->dst_address.as_u8[dst_address_byte_index];

  /* Number of bits next plies <= 0 => insert leaves this ply. */
  if (n_dst_bits_next_plies <= 0)
    {
      /* The mask length of the address to insert maps to this ply */
      uword old_leaf_is_terminal;
      u32 i, n_dst_bits_this_ply;

      /* The number of bits, and hence slots/buckets, we will fill */
      n_dst_bits_this_ply = clib_min (8, -n_dst_bits_next_plies);
      ASSERT ((a->dst_address.as_u8[dst_address_byte_index] &
	       pow2_mask (n_dst_bits_this_ply)) == 0);

      /* Starting at the value of the byte at this section of the v4 address
       * fill the buckets/slots of the ply */
      for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++)
	{
	  ip4_fib_mtrie_8_ply_t *new_ply;

	  old_leaf = old_ply->leaves[i];
	  old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);

	  if (a->dst_address_length >= old_ply->dst_address_bits_of_leaves[i])
	    {
	      /* The new leaf is more or equally specific than the one currently
	       * occupying the slot */
	      new_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);

	      if (old_leaf_is_terminal)
		{
		  /* The current leaf is terminal, we can replace it with
		   * the new one */
		  old_ply->n_non_empty_leafs -=
		    ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);

		  old_ply->dst_address_bits_of_leaves[i] =
		    a->dst_address_length;
		  clib_atomic_cmp_and_swap (&old_ply->leaves[i], old_leaf,
					    new_leaf);
		  ASSERT (old_ply->leaves[i] == new_leaf);

		  old_ply->n_non_empty_leafs +=
		    ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
		  ASSERT (old_ply->n_non_empty_leafs <=
			  ARRAY_LEN (old_ply->leaves));
		}
	      else
		{
		  /* Existing leaf points to another ply.  We need to place
		   * new_leaf into all more specific slots. */
		  new_ply = get_next_ply_for_leaf (m, old_leaf);
		  set_ply_with_more_specific_leaf (m, new_ply, new_leaf,
						   a->dst_address_length);
		}
	    }
	  else if (!old_leaf_is_terminal)
	    {
	      /* The current leaf is less specific and not termial (i.e. a ply),
	       * recurse on down the trie */
	      new_ply = get_next_ply_for_leaf (m, old_leaf);
	      set_leaf (m, a, new_ply - ip4_ply_pool,
			dst_address_byte_index + 1);
	    }
	  /*
	   * else
	   *  the route we are adding is less specific than the leaf currently
	   *  occupying this slot. leave it there
	   */
	}
    }
  else
    {
      /* The address to insert requires us to move down at a lower level of
       * the trie - recurse on down */
      ip4_fib_mtrie_8_ply_t *new_ply;
      u8 ply_base_len;

      ply_base_len = 8 * (dst_address_byte_index + 1);

      old_leaf = old_ply->leaves[dst_byte];

      if (ip4_fib_mtrie_leaf_is_terminal (old_leaf))
	{
	  /* There is a leaf occupying the slot. Replace it with a new ply */
	  old_ply->n_non_empty_leafs -=
	    ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte);

	  new_leaf =
	    ply_create (m, old_leaf,
			old_ply->dst_address_bits_of_leaves[dst_byte],
			ply_base_len);
	  new_ply = get_next_ply_for_leaf (m, new_leaf);

	  /* Refetch since ply_create may move pool. */
	  old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index);

	  clib_atomic_cmp_and_swap (&old_ply->leaves[dst_byte], old_leaf,
				    new_leaf);
	  ASSERT (old_ply->leaves[dst_byte] == new_leaf);
	  old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len;

	  old_ply->n_non_empty_leafs +=
	    ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte);
	  ASSERT (old_ply->n_non_empty_leafs >= 0);
	}
      else
	new_ply = get_next_ply_for_leaf (m, old_leaf);

      set_leaf (m, a, new_ply - ip4_ply_pool, dst_address_byte_index + 1);
    }
}

static void
set_root_leaf (ip4_fib_mtrie_t * m,
	       const ip4_fib_mtrie_set_unset_leaf_args_t * a)
{
  ip4_fib_mtrie_leaf_t old_leaf, new_leaf;
  ip4_fib_mtrie_16_ply_t *old_ply;
  i32 n_dst_bits_next_plies;
  u16 dst_byte;

  old_ply = &m->root_ply;

  ASSERT (a->dst_address_length <= 32);

  /* how many bits of the destination address are in the next PLY */
  n_dst_bits_next_plies = a->dst_address_length - BITS (u16);

  dst_byte = a->dst_address.as_u16[0];

  /* Number of bits next plies <= 0 => insert leaves this ply. */
  if (n_dst_bits_next_plies <= 0)
    {
      /* The mask length of the address to insert maps to this ply */
      uword old_leaf_is_terminal;
      u32 i, n_dst_bits_this_ply;

      /* The number of bits, and hence slots/buckets, we will fill */
      n_dst_bits_this_ply = 16 - a->dst_address_length;
      ASSERT ((clib_host_to_net_u16 (a->dst_address.as_u16[0]) &
	       pow2_mask (n_dst_bits_this_ply)) == 0);

      /* Starting at the value of the byte at this section of the v4 address
       * fill the buckets/slots of the ply */
      for (i = 0; i < (1 << n_dst_bits_this_ply); i++)
	{
	  ip4_fib_mtrie_8_ply_t *new_ply;
	  u16 slot;

	  slot = clib_net_to_host_u16 (dst_byte);
	  slot += i;
	  slot = clib_host_to_net_u16 (slot);

	  old_leaf = old_ply->leaves[slot];
	  old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);

	  if (a->dst_address_length >=
	      old_ply->dst_address_bits_of_leaves[slot])
	    {
	      /* The new leaf is more or equally specific than the one currently
	       * occupying the slot */
	      new_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);

	      if (old_leaf_is_terminal)
		{
		  /* The current leaf is terminal, we can replace it with
		   * the new one */
		  old_ply->dst_address_bits_of_leaves[slot] =
		    a->dst_address_length;
		  clib_atomic_cmp_and_swap (&old_ply->leaves[slot],
					    old_leaf, new_leaf);
		  ASSERT (old_ply->leaves[slot] == new_leaf);
		}
	      else
		{
		  /* Existing leaf points to another ply.  We need to place
		   * new_leaf into all more specific slots. */
		  new_ply = get_next_ply_for_leaf (m, old_leaf);
		  set_ply_with_more_specific_leaf (m, new_ply, new_leaf,
						   a->dst_address_length);
		}
	    }
	  else if (!old_leaf_is_terminal)
	    {
	      /* The current leaf is less specific and not termial (i.e. a ply),
	       * recurse on down the trie */
	      new_ply = get_next_ply_for_leaf (m, old_leaf);
	      set_leaf (m, a, new_ply - ip4_ply_pool, 2);
	    }
	  /*
	   * else
	   *  the route we are adding is less specific than the leaf currently
	   *  occupying this slot. leave it there
	   */
	}
    }
  else
    {
      /* The address to insert requires us to move down at a lower level of
       * the trie - recurse on down */
      ip4_fib_mtrie_8_ply_t *new_ply;
      u8 ply_base_len;

      ply_base_len = 16;

      old_leaf = old_ply->leaves[dst_byte];

      if (ip4_fib_mtrie_leaf_is_terminal (old_leaf))
	{
	  /* There is a leaf occupying the slot. Replace it with a new ply */
	  new_leaf =
	    ply_create (m, old_leaf,
			old_ply->dst_address_bits_of_leaves[dst_byte],
			ply_base_len);
	  new_ply = get_next_ply_for_leaf (m, new_leaf);

	  clib_atomic_cmp_and_swap (&old_ply->leaves[dst_byte], old_leaf,
				    new_leaf);
	  ASSERT (old_ply->leaves[dst_byte] == new_leaf);
	  old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len;
	}
      else
	new_ply = get_next_ply_for_leaf (m, old_leaf);

      set_leaf (m, a, new_ply - ip4_ply_pool, 2);
    }
}

static uword
unset_leaf (ip4_fib_mtrie_t * m,
	    const ip4_fib_mtrie_set_unset_leaf_args_t * a,
	    ip4_fib_mtrie_8_ply_t * old_ply, u32 dst_address_byte_index)
{
  ip4_fib_mtrie_leaf_t old_leaf, del_leaf;
  i32 n_dst_bits_next_plies;
  i32 i, n_dst_bits_this_ply, old_leaf_is_terminal;
  u8 dst_byte;

  ASSERT (a->dst_address_length <= 32);
  ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8));

  n_dst_bits_next_plies =
    a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1);

  dst_byte = a->dst_address.as_u8[dst_address_byte_index];
  if (n_dst_bits_next_plies < 0)
    dst_byte &= ~pow2_mask (-n_dst_bits_next_plies);

  n_dst_bits_this_ply =
    n_dst_bits_next_plies <= 0 ? -n_dst_bits_next_plies : 0;
  n_dst_bits_this_ply = clib_min (8, n_dst_bits_this_ply);

  del_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);

  for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++)
    {
      old_leaf = old_ply->leaves[i];
      old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);

      if (old_leaf == del_leaf
	  || (!old_leaf_is_terminal
	      && unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf),
			     dst_address_byte_index + 1)))
	{
	  old_ply->n_non_empty_leafs -=
	    ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);

	  old_ply->leaves[i] =
	    ip4_fib_mtrie_leaf_set_adj_index (a->cover_adj_index);
	  old_ply->dst_address_bits_of_leaves[i] = a->cover_address_length;

	  old_ply->n_non_empty_leafs +=
	    ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);

	  ASSERT (old_ply->n_non_empty_leafs >= 0);
	  if (old_ply->n_non_empty_leafs == 0 && dst_address_byte_index > 0)
	    {
	      pool_put (ip4_ply_pool, old_ply);
	      /* Old ply was deleted. */
	      return 1;
	    }
#if CLIB_DEBUG > 0
	  else if (dst_address_byte_index)
	    {
	      int ii, count = 0;
	      for (ii = 0; ii < ARRAY_LEN (old_ply->leaves); ii++)
		{
		  count += ip4_fib_mtrie_leaf_is_non_empty (old_ply, ii);
		}
	      ASSERT (count);
	    }
#endif
	}
    }

  /* Old ply was not deleted. */
  return 0;
}

static void
unset_root_leaf (ip4_fib_mtrie_t * m,
		 const ip4_fib_mtrie_set_unset_leaf_args_t * a)
{
  ip4_fib_mtrie_leaf_t old_leaf, del_leaf;
  i32 n_dst_bits_next_plies;
  i32 i, n_dst_bits_this_ply, old_leaf_is_terminal;
  u16 dst_byte;
  ip4_fib_mtrie_16_ply_t *old_ply;

  ASSERT (a->dst_address_length <= 32);

  old_ply = &m->root_ply;
  n_dst_bits_next_plies = a->dst_address_length - BITS (u16);

  dst_byte = a->dst_address.as_u16[0];

  n_dst_bits_this_ply = (n_dst_bits_next_plies <= 0 ?
			 (16 - a->dst_address_length) : 0);

  del_leaf = ip4_fib_mtrie_leaf_set_adj_index (a->adj_index);

  /* Starting at the value of the byte at this section of the v4 address
   * fill the buckets/slots of the ply */
  for (i = 0; i < (1 << n_dst_bits_this_ply); i++)
    {
      u16 slot;

      slot = clib_net_to_host_u16 (dst_byte);
      slot += i;
      slot = clib_host_to_net_u16 (slot);

      old_leaf = old_ply->leaves[slot];
      old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);

      if (old_leaf == del_leaf
	  || (!old_leaf_is_terminal
	      && unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf), 2)))
	{
	  old_ply->leaves[slot] =
	    ip4_fib_mtrie_leaf_set_adj_index (a->cover_adj_index);
	  old_ply->dst_address_bits_of_leaves[slot] = a->cover_address_length;
	}
    }
}

void
ip4_fib_mtrie_route_add (ip4_fib_mtrie_t * m,
			 const ip4_address_t * dst_address,
			 u32 dst_address_length, u32 adj_index)
{
  ip4_fib_mtrie_set_unset_leaf_args_t a;
  ip4_main_t *im = &ip4_main;

  /* Honor dst_address_length. Fib masks are in network byte order */
  a.dst_address.as_u32 = (dst_address->as_u32 &
			  im->fib_masks[dst_address_length]);
  a.dst_address_length = dst_address_length;
  a.adj_index = adj_index;

  set_root_leaf (m, &a);
}

void
ip4_fib_mtrie_route_del (ip4_fib_mtrie_t * m,
			 const ip4_address_t * dst_address,
			 u32 dst_address_length,
			 u32 adj_index,
			 u32 cover_address_length, u32 cover_adj_index)
{
  ip4_fib_mtrie_set_unset_leaf_args_t a;
  ip4_main_t *im = &ip4_main;

  /* Honor dst_address_length. Fib masks are in network byte order */
  a.dst_address.as_u32 = (dst_address->as_u32 &
			  im->fib_masks[dst_address_length]);
  a.dst_address_length = dst_address_length;
  a.adj_index = adj_index;
  a.cover_adj_index = cover_adj_index;
  a.cover_address_length = cover_address_length;

  /* the top level ply is never removed */
  unset_root_leaf (m, &a);
}

/* Returns number of bytes of memory used by mtrie. */
static uword
mtrie_ply_memory_usage (ip4_fib_mtrie_t * m, ip4_fib_mtrie_8_ply_t * p)
{
  uword bytes, i;

  bytes = sizeof (p[0]);
  for (i = 0; i < ARRAY_LEN (p->leaves); i++)
    {
      ip4_fib_mtrie_leaf_t l = p->leaves[i];
      if (ip4_fib_mtrie_leaf_is_next_ply (l))
	bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l));
    }

  return bytes;
}

/* Returns number of bytes of memory used by mtrie. */
uword
ip4_fib_mtrie_memory_usage (ip4_fib_mtrie_t * m)
{
  uword bytes, i;

  bytes = sizeof (*m);
  for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++)
    {
      ip4_fib_mtrie_leaf_t l = m->root_ply.leaves[i];
      if (ip4_fib_mtrie_leaf_is_next_ply (l))
	bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l));
    }

  return bytes;
}

static u8 *
format_ip4_fib_mtrie_leaf (u8 * s, va_list * va)
{
  ip4_fib_mtrie_leaf_t l = va_arg (*va, ip4_fib_mtrie_leaf_t);

  if (ip4_fib_mtrie_leaf_is_terminal (l))
    s = format (s, "lb-index %d", ip4_fib_mtrie_leaf_get_adj_index (l));
  else
    s = format (s, "next ply %d", ip4_fib_mtrie_leaf_get_next_ply_index (l));
  return s;
}

#define FORMAT_PLY(s, _p, _a, _i, _base_address, _ply_max_len, _indent) \
({                                                                      \
  u32 a, ia_length;                                                     \
  ip4_address_t ia;                                                     \
  ip4_fib_mtrie_leaf_t _l = p->leaves[(_i)];                            \
                                                                        \
  a = (_base_address) + ((_a) << (32 - (_ply_max_len)));                \
  ia.as_u32 = clib_host_to_net_u32 (a);                                 \
  ia_length = (_p)->dst_address_bits_of_leaves[(_i)];                   \
  s = format (s, "\n%U%U %U",                                           \
              format_white_space, (_indent) + 4,                        \
              format_ip4_address_and_length, &ia, ia_length,            \
              format_ip4_fib_mtrie_leaf, _l);                           \
                                                                        \
  if (ip4_fib_mtrie_leaf_is_next_ply (_l))                              \
    s = format (s, "\n%U",                                              \
                format_ip4_fib_mtrie_ply, m, a, (_indent) + 8,          \
                ip4_fib_mtrie_leaf_get_next_ply_index (_l));            \
  s;                                                                    \
})

static u8 *
format_ip4_fib_mtrie_ply (u8 * s, va_list * va)
{
  ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *);
  u32 base_address = va_arg (*va, u32);
  u32 indent = va_arg (*va, u32);
  u32 ply_index = va_arg (*va, u32);
  ip4_fib_mtrie_8_ply_t *p;
  int i;

  p = pool_elt_at_index (ip4_ply_pool, ply_index);
  s = format (s, "%Uply index %d, %d non-empty leaves",
	      format_white_space, indent, ply_index, p->n_non_empty_leafs);

  for (i = 0; i < ARRAY_LEN (p->leaves); i++)
    {
      if (ip4_fib_mtrie_leaf_is_non_empty (p, i))
	{
	  s = FORMAT_PLY (s, p, i, i, base_address,
			  p->dst_address_bits_base + 8, indent);
	}
    }

  return s;
}

u8 *
format_ip4_fib_mtrie (u8 * s, va_list * va)
{
  ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *);
  int verbose = va_arg (*va, int);
  ip4_fib_mtrie_16_ply_t *p;
  u32 base_address = 0;
  int i;

  s = format (s, "%d plies, memory usage %U\n",
	      pool_elts (ip4_ply_pool),
	      format_memory_size, ip4_fib_mtrie_memory_usage (m));
  s = format (s, "root-ply");
  p = &m->root_ply;

  if (verbose)
    {
      s = format (s, "root-ply");
      p = &m->root_ply;

      for (i = 0; i < ARRAY_LEN (p->leaves); i++)
	{
	  u16 slot;

	  slot = clib_host_to_net_u16 (i);

	  if (p->dst_address_bits_of_leaves[slot] > 0)
	    {
	      s = FORMAT_PLY (s, p, i, slot, base_address, 16, 0);
	    }
	}
    }

  return s;
}

/** Default heap size for the IPv4 mtries */
#define IP4_FIB_DEFAULT_MTRIE_HEAP_SIZE (32<<20)

static clib_error_t *
ip4_mtrie_module_init (vlib_main_t * vm)
{
  CLIB_UNUSED (ip4_fib_mtrie_8_ply_t * p);
  ip4_main_t *im = &ip4_main;
  clib_error_t *error = NULL;
  uword *old_heap;

  if (0 == im->mtrie_heap_size)
    im->mtrie_heap_size = IP4_FIB_DEFAULT_MTRIE_HEAP_SIZE;
#if USE_DLMALLOC == 0
  im->mtrie_mheap = mheap_alloc (0, im->mtrie_heap_size);
#else
  im->mtrie_mheap = create_mspace (im->mtrie_heap_size, 1 /* locked */ );
#endif

  /* Burn one ply so index 0 is taken */
  old_heap = clib_mem_set_heap (ip4_main.mtrie_mheap);
  pool_get (ip4_ply_pool, p);
  clib_mem_set_heap (old_heap);

  return (error);
}

VLIB_INIT_FUNCTION (ip4_mtrie_module_init);

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */