aboutsummaryrefslogtreecommitdiffstats
path: root/VPP_AGENT_STABLE_VER
blob: 59c6dc5f537821bd281dcca6ecdab584f884fbb9 (plain)
1
pantheon-dev
7 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
/*
 *   BSD LICENSE
 *
 * Copyright (c) 2013-2017, Wind River Systems, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1) Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2) Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3) Neither the name of Wind River Systems nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_byteorder.h>
#include <rte_dev.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_io.h>

#include "rte_avp_common.h"
#include "rte_avp_fifo.h"

#include "avp_logs.h"


static int avp_dev_create(struct rte_pci_device *pci_dev,
			  struct rte_eth_dev *eth_dev);

static int avp_dev_configure(struct rte_eth_dev *dev);
static int avp_dev_start(struct rte_eth_dev *dev);
static void avp_dev_stop(struct rte_eth_dev *dev);
static void avp_dev_close(struct rte_eth_dev *dev);
static void avp_dev_info_get(struct rte_eth_dev *dev,
			     struct rte_eth_dev_info *dev_info);
static void avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int avp_dev_link_update(struct rte_eth_dev *dev,
			       __rte_unused int wait_to_complete);
static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev);

static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
				  uint16_t rx_queue_id,
				  uint16_t nb_rx_desc,
				  unsigned int socket_id,
				  const struct rte_eth_rxconf *rx_conf,
				  struct rte_mempool *pool);

static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
				  uint16_t tx_queue_id,
				  uint16_t nb_tx_desc,
				  unsigned int socket_id,
				  const struct rte_eth_txconf *tx_conf);

static uint16_t avp_recv_scattered_pkts(void *rx_queue,
					struct rte_mbuf **rx_pkts,
					uint16_t nb_pkts);

static uint16_t avp_recv_pkts(void *rx_queue,
			      struct rte_mbuf **rx_pkts,
			      uint16_t nb_pkts);

static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
					struct rte_mbuf **tx_pkts,
					uint16_t nb_pkts);

static uint16_t avp_xmit_pkts(void *tx_queue,
			      struct rte_mbuf **tx_pkts,
			      uint16_t nb_pkts);

static void avp_dev_rx_queue_release(void *rxq);
static void avp_dev_tx_queue_release(void *txq);

static void avp_dev_stats_get(struct rte_eth_dev *dev,
			      struct rte_eth_stats *stats);
static void avp_dev_stats_reset(struct rte_eth_dev *dev);


#define AVP_DEV_TO_PCI(eth_dev) RTE_DEV_TO_PCI((eth_dev)->device)


#define AVP_MAX_RX_BURST 64
#define AVP_MAX_TX_BURST 64
#define AVP_MAX_MAC_ADDRS 1
#define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN


/*
 * Defines the number of microseconds to wait before checking the response
 * queue for completion.
 */
#define AVP_REQUEST_DELAY_USECS (5000)

/*
 * Defines the number times to check the response queue for completion before
 * declaring a timeout.
 */
#define AVP_MAX_REQUEST_RETRY (100)

/* Defines the current PCI driver version number */
#define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION

/*
 * The set of PCI devices this driver supports
 */
static const struct rte_pci_id pci_id_avp_map[] = {
	{ .vendor_id = RTE_AVP_PCI_VENDOR_ID,
	  .device_id = RTE_AVP_PCI_DEVICE_ID,
	  .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
	  .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
	  .class_id = RTE_CLASS_ANY_ID,
	},

	{ .vendor_id = 0, /* sentinel */
	},
};

/*
 * dev_ops for avp, bare necessities for basic operation
 */
static const struct eth_dev_ops avp_eth_dev_ops = {
	.dev_configure       = avp_dev_configure,
	.dev_start           = avp_dev_start,
	.dev_stop            = avp_dev_stop,
	.dev_close           = avp_dev_close,
	.dev_infos_get       = avp_dev_info_get,
	.vlan_offload_set    = avp_vlan_offload_set,
	.stats_get           = avp_dev_stats_get,
	.stats_reset         = avp_dev_stats_reset,
	.link_update         = avp_dev_link_update,
	.promiscuous_enable  = avp_dev_promiscuous_enable,
	.promiscuous_disable = avp_dev_promiscuous_disable,
	.rx_queue_setup      = avp_dev_rx_queue_setup,
	.rx_queue_release    = avp_dev_rx_queue_release,
	.tx_queue_setup      = avp_dev_tx_queue_setup,
	.tx_queue_release    = avp_dev_tx_queue_release,
};

/**@{ AVP device flags */
#define AVP_F_PROMISC (1 << 1)
#define AVP_F_CONFIGURED (1 << 2)
#define AVP_F_LINKUP (1 << 3)
#define AVP_F_DETACHED (1 << 4)
/**@} */

/* Ethernet device validation marker */
#define AVP_ETHDEV_MAGIC 0x92972862

/*
 * Defines the AVP device attributes which are attached to an RTE ethernet
 * device
 */
struct avp_dev {
	uint32_t magic; /**< Memory validation marker */
	uint64_t device_id; /**< Unique system identifier */
	struct ether_addr ethaddr; /**< Host specified MAC address */
	struct rte_eth_dev_data *dev_data;
	/**< Back pointer to ethernet device data */
	volatile uint32_t flags; /**< Device operational flags */
	uint8_t port_id; /**< Ethernet port identifier */
	struct rte_mempool *pool; /**< pkt mbuf mempool */
	unsigned int guest_mbuf_size; /**< local pool mbuf size */
	unsigned int host_mbuf_size; /**< host mbuf size */
	unsigned int max_rx_pkt_len; /**< maximum receive unit */
	uint32_t host_features; /**< Supported feature bitmap */
	uint32_t features; /**< Enabled feature bitmap */
	unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
	unsigned int max_tx_queues; /**< Maximum number of transmit queues */
	unsigned int num_rx_queues; /**< Negotiated number of receive queues */
	unsigned int max_rx_queues; /**< Maximum number of receive queues */

	struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
	struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
	struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
	/**< Allocated mbufs queue */
	struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
	/**< To be freed mbufs queue */

	/* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
	rte_spinlock_t lock;

	/* For request & response */
	struct rte_avp_fifo *req_q; /**< Request queue */
	struct rte_avp_fifo *resp_q; /**< Response queue */
	void *host_sync_addr; /**< (host) Req/Resp Mem address */
	void *sync_addr; /**< Req/Resp Mem address */
	void *host_mbuf_addr; /**< (host) MBUF pool start address */
	void *mbuf_addr; /**< MBUF pool start address */
} __rte_cache_aligned;

/* RTE ethernet private data */
struct avp_adapter {
	struct avp_dev avp;
} __rte_cache_aligned;


/* 32-bit MMIO register write */
#define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))

/* 32-bit MMIO register read */
#define AVP_READ32(_addr) rte_read32_relaxed((_addr))

/* Macro to cast the ethernet device private data to a AVP object */
#define AVP_DEV_PRIVATE_TO_HW(adapter) \
	(&((struct avp_adapter *)adapter)->avp)

/*
 * Defines the structure of a AVP device queue for the purpose of handling the
 * receive and transmit burst callback functions
 */
struct avp_queue {
	struct rte_eth_dev_data *dev_data;
	/**< Backpointer to ethernet device data */
	struct avp_dev *avp; /**< Backpointer to AVP device */
	uint16_t queue_id;
	/**< Queue identifier used for indexing current queue */
	uint16_t queue_base;
	/**< Base queue identifier for queue servicing */
	uint16_t queue_limit;
	/**< Maximum queue identifier for queue servicing */

	uint64_t packets;
	uint64_t bytes;
	uint64_t errors;
};

/* send a request and wait for a response
 *
 * @warning must be called while holding the avp->lock spinlock.
 */
static int
avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
{
	unsigned int retry = AVP_MAX_REQUEST_RETRY;
	void *resp_addr = NULL;
	unsigned int count;
	int ret;

	PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);

	request->result = -ENOTSUP;

	/* Discard any stale responses before starting a new request */
	while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
		PMD_DRV_LOG(DEBUG, "Discarding stale response\n");

	rte_memcpy(avp->sync_addr, request, sizeof(*request));
	count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
	if (count < 1) {
		PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
			    request->req_id);
		ret = -EBUSY;
		goto done;
	}

	while (retry--) {
		/* wait for a response */
		usleep(AVP_REQUEST_DELAY_USECS);

		count = avp_fifo_count(avp->resp_q);
		if (count >= 1) {
			/* response received */
			break;
		}

		if ((count < 1) && (retry == 0)) {
			PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
				    request->req_id);
			ret = -ETIME;
			goto done;
		}
	}

	/* retrieve the response */
	count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
	if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
		PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
			    count, resp_addr, avp->host_sync_addr);
		ret = -ENODATA;
		goto done;
	}

	/* copy to user buffer */
	rte_memcpy(request, avp->sync_addr, sizeof(*request));
	ret = 0;

	PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
		    request->result, request->req_id);

done:
	return ret;
}

static int
avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_request request;
	int ret;

	/* setup a link state change request */
	memset(&request, 0, sizeof(request));
	request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
	request.if_up = state;

	ret = avp_dev_process_request(avp, &request);

	return ret == 0 ? request.result : ret;
}

static int
avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
			struct rte_avp_device_config *config)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_request request;
	int ret;

	/* setup a configure request */
	memset(&request, 0, sizeof(request));
	request.req_id = RTE_AVP_REQ_CFG_DEVICE;
	memcpy(&request.config, config, sizeof(request.config));

	ret = avp_dev_process_request(avp, &request);

	return ret == 0 ? request.result : ret;
}

static int
avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_request request;
	int ret;

	/* setup a shutdown request */
	memset(&request, 0, sizeof(request));
	request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;

	ret = avp_dev_process_request(avp, &request);

	return ret == 0 ? request.result : ret;
}

/* translate from host mbuf virtual address to guest virtual address */
static inline void *
avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
{
	return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
				       (uintptr_t)avp->host_mbuf_addr),
			   (uintptr_t)avp->mbuf_addr);
}

/* translate from host physical address to guest virtual address */
static void *
avp_dev_translate_address(struct rte_eth_dev *eth_dev,
			  phys_addr_t host_phys_addr)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	struct rte_mem_resource *resource;
	struct rte_avp_memmap_info *info;
	struct rte_avp_memmap *map;
	off_t offset;
	void *addr;
	unsigned int i;

	addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
	resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
	info = (struct rte_avp_memmap_info *)resource->addr;

	offset = 0;
	for (i = 0; i < info->nb_maps; i++) {
		/* search all segments looking for a matching address */
		map = &info->maps[i];

		if ((host_phys_addr >= map->phys_addr) &&
			(host_phys_addr < (map->phys_addr + map->length))) {
			/* address is within this segment */
			offset += (host_phys_addr - map->phys_addr);
			addr = RTE_PTR_ADD(addr, offset);

			PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
				    host_phys_addr, addr);

			return addr;
		}
		offset += map->length;
	}

	return NULL;
}

/* verify that the incoming device version is compatible with our version */
static int
avp_dev_version_check(uint32_t version)
{
	uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
	uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);

	if (device <= driver) {
		/* the host driver version is less than or equal to ours */
		return 0;
	}

	return 1;
}

/* verify that memory regions have expected version and validation markers */
static int
avp_dev_check_regions(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	struct rte_avp_memmap_info *memmap;
	struct rte_avp_device_info *info;
	struct rte_mem_resource *resource;
	unsigned int i;

	/* Dump resource info for debug */
	for (i = 0; i < PCI_MAX_RESOURCE; i++) {
		resource = &pci_dev->mem_resource[i];
		if ((resource->phys_addr == 0) || (resource->len == 0))
			continue;

		PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
			    i, resource->phys_addr,
			    resource->len, resource->addr);

		switch (i) {
		case RTE_AVP_PCI_MEMMAP_BAR:
			memmap = (struct rte_avp_memmap_info *)resource->addr;
			if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
			    (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
				PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
					    memmap->magic, memmap->version);
				return -EINVAL;
			}
			break;

		case RTE_AVP_PCI_DEVICE_BAR:
			info = (struct rte_avp_device_info *)resource->addr;
			if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
			    avp_dev_version_check(info->version)) {
				PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
					    info->magic, info->version,
					    AVP_DPDK_DRIVER_VERSION);
				return -EINVAL;
			}
			break;

		case RTE_AVP_PCI_MEMORY_BAR:
		case RTE_AVP_PCI_MMIO_BAR:
			if (resource->addr == NULL) {
				PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
					    i);
				return -EINVAL;
			}
			break;

		case RTE_AVP_PCI_MSIX_BAR:
		default:
			/* no validation required */
			break;
		}
	}

	return 0;
}

static int
avp_dev_detach(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	int ret;

	PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
		    eth_dev->data->port_id, avp->device_id);

	rte_spinlock_lock(&avp->lock);

	if (avp->flags & AVP_F_DETACHED) {
		PMD_DRV_LOG(NOTICE, "port %u already detached\n",
			    eth_dev->data->port_id);
		ret = 0;
		goto unlock;
	}

	/* shutdown the device first so the host stops sending us packets. */
	ret = avp_dev_ctrl_shutdown(eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
			    ret);
		avp->flags &= ~AVP_F_DETACHED;
		goto unlock;
	}

	avp->flags |= AVP_F_DETACHED;
	rte_wmb();

	/* wait for queues to acknowledge the presence of the detach flag */
	rte_delay_ms(1);

	ret = 0;

unlock:
	rte_spinlock_unlock(&avp->lock);
	return ret;
}

static void
_avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
	struct avp_dev *avp =
		AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct avp_queue *rxq;
	uint16_t queue_count;
	uint16_t remainder;

	rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];

	/*
	 * Must map all AVP fifos as evenly as possible between the configured
	 * device queues.  Each device queue will service a subset of the AVP
	 * fifos. If there is an odd number of device queues the first set of
	 * device queues will get the extra AVP fifos.
	 */
	queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
	remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
	if (rx_queue_id < remainder) {
		/* these queues must service one extra FIFO */
		rxq->queue_base = rx_queue_id * (queue_count + 1);
		rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
	} else {
		/* these queues service the regular number of FIFO */
		rxq->queue_base = ((remainder * (queue_count + 1)) +
				   ((rx_queue_id - remainder) * queue_count));
		rxq->queue_limit = rxq->queue_base + queue_count - 1;
	}

	PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
		    rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);

	rxq->queue_id = rxq->queue_base;
}

static void
_avp_set_queue_counts(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_device_info *host_info;
	void *addr;

	addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
	host_info = (struct rte_avp_device_info *)addr;

	/*
	 * the transmit direction is not negotiated beyond respecting the max
	 * number of queues because the host can handle arbitrary guest tx
	 * queues (host rx queues).
	 */
	avp->num_tx_queues = eth_dev->data->nb_tx_queues;

	/*
	 * the receive direction is more restrictive.  The host requires a
	 * minimum number of guest rx queues (host tx queues) therefore
	 * negotiate a value that is at least as large as the host minimum
	 * requirement.  If the host and guest values are not identical then a
	 * mapping will be established in the receive_queue_setup function.
	 */
	avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
				     eth_dev->data->nb_rx_queues);

	PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
		    avp->num_tx_queues, avp->num_rx_queues);
}

static int
avp_dev_attach(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_device_config config;
	unsigned int i;
	int ret;

	PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
		    eth_dev->data->port_id, avp->device_id);

	rte_spinlock_lock(&avp->lock);

	if (!(avp->flags & AVP_F_DETACHED)) {
		PMD_DRV_LOG(NOTICE, "port %u already attached\n",
			    eth_dev->data->port_id);
		ret = 0;
		goto unlock;
	}

	/*
	 * make sure that the detached flag is set prior to reconfiguring the
	 * queues.
	 */
	avp->flags |= AVP_F_DETACHED;
	rte_wmb();

	/*
	 * re-run the device create utility which will parse the new host info
	 * and setup the AVP device queue pointers.
	 */
	ret = avp_dev_create(AVP_DEV_TO_PCI(eth_dev), eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
			    ret);
		goto unlock;
	}

	if (avp->flags & AVP_F_CONFIGURED) {
		/*
		 * Update the receive queue mapping to handle cases where the
		 * source and destination hosts have different queue
		 * requirements.  As long as the DETACHED flag is asserted the
		 * queue table should not be referenced so it should be safe to
		 * update it.
		 */
		_avp_set_queue_counts(eth_dev);
		for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
			_avp_set_rx_queue_mappings(eth_dev, i);

		/*
		 * Update the host with our config details so that it knows the
		 * device is active.
		 */
		memset(&config, 0, sizeof(config));
		config.device_id = avp->device_id;
		config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
		config.driver_version = AVP_DPDK_DRIVER_VERSION;
		config.features = avp->features;
		config.num_tx_queues = avp->num_tx_queues;
		config.num_rx_queues = avp->num_rx_queues;
		config.if_up = !!(avp->flags & AVP_F_LINKUP);

		ret = avp_dev_ctrl_set_config(eth_dev, &config);
		if (ret < 0) {
			PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
				    ret);
			goto unlock;
		}
	}

	rte_wmb();
	avp->flags &= ~AVP_F_DETACHED;

	ret = 0;

unlock:
	rte_spinlock_unlock(&avp->lock);
	return ret;
}

static void
avp_dev_interrupt_handler(void *data)
{
	struct rte_eth_dev *eth_dev = data;
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
	uint32_t status, value;
	int ret;

	if (registers == NULL)
		rte_panic("no mapped MMIO register space\n");

	/* read the interrupt status register
	 * note: this register clears on read so all raised interrupts must be
	 *    handled or remembered for later processing
	 */
	status = AVP_READ32(
		RTE_PTR_ADD(registers,
			    RTE_AVP_INTERRUPT_STATUS_OFFSET));

	if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
		/* handle interrupt based on current status */
		value = AVP_READ32(
			RTE_PTR_ADD(registers,
				    RTE_AVP_MIGRATION_STATUS_OFFSET));
		switch (value) {
		case RTE_AVP_MIGRATION_DETACHED:
			ret = avp_dev_detach(eth_dev);
			break;
		case RTE_AVP_MIGRATION_ATTACHED:
			ret = avp_dev_attach(eth_dev);
			break;
		default:
			PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
				    value);
			ret = -EINVAL;
		}

		/* acknowledge the request by writing out our current status */
		value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
		AVP_WRITE32(value,
			    RTE_PTR_ADD(registers,
					RTE_AVP_MIGRATION_ACK_OFFSET));

		PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
	}

	if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
		PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
			    status);

	/* re-enable UIO interrupt handling */
	ret = rte_intr_enable(&pci_dev->intr_handle);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
			    ret);
		/* continue */
	}
}

static int
avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
	int ret;

	if (registers == NULL)
		return -EINVAL;

	/* enable UIO interrupt handling */
	ret = rte_intr_enable(&pci_dev->intr_handle);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
			    ret);
		return ret;
	}

	/* inform the device that all interrupts are enabled */
	AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
		    RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));

	return 0;
}

static int
avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
	int ret;

	if (registers == NULL)
		return 0;

	/* inform the device that all interrupts are disabled */
	AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
		    RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));

	/* enable UIO interrupt handling */
	ret = rte_intr_disable(&pci_dev->intr_handle);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
			    ret);
		return ret;
	}

	return 0;
}

static int
avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	int ret;

	/* register a callback handler with UIO for interrupt notifications */
	ret = rte_intr_callback_register(&pci_dev->intr_handle,
					 avp_dev_interrupt_handler,
					 (void *)eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
			    ret);
		return ret;
	}

	/* enable interrupt processing */
	return avp_dev_enable_interrupts(eth_dev);
}

static int
avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
	uint32_t value;

	if (registers == NULL)
		return 0;

	value = AVP_READ32(RTE_PTR_ADD(registers,
				       RTE_AVP_MIGRATION_STATUS_OFFSET));
	if (value == RTE_AVP_MIGRATION_DETACHED) {
		/* migration is in progress; ack it if we have not already */
		AVP_WRITE32(value,
			    RTE_PTR_ADD(registers,
					RTE_AVP_MIGRATION_ACK_OFFSET));
		return 1;
	}
	return 0;
}

/*
 * create a AVP device using the supplied device info by first translating it
 * to guest address space(s).
 */
static int
avp_dev_create(struct rte_pci_device *pci_dev,
	       struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_device_info *host_info;
	struct rte_mem_resource *resource;
	unsigned int i;

	resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
	if (resource->addr == NULL) {
		PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
			    RTE_AVP_PCI_DEVICE_BAR);
		return -EFAULT;
	}
	host_info = (struct rte_avp_device_info *)resource->addr;

	if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
		avp_dev_version_check(host_info->version)) {
		PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
			    host_info->magic, host_info->version,
			    AVP_DPDK_DRIVER_VERSION);
		return -EINVAL;
	}

	PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
		    RTE_AVP_GET_RELEASE_VERSION(host_info->version),
		    RTE_AVP_GET_MAJOR_VERSION(host_info->version),
		    RTE_AVP_GET_MINOR_VERSION(host_info->version));

	PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
		    host_info->min_tx_queues, host_info->max_tx_queues);
	PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
		    host_info->min_rx_queues, host_info->max_rx_queues);
	PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
		    host_info->features);

	if (avp->magic != AVP_ETHDEV_MAGIC) {
		/*
		 * First time initialization (i.e., not during a VM
		 * migration)
		 */
		memset(avp, 0, sizeof(*avp));
		avp->magic = AVP_ETHDEV_MAGIC;
		avp->dev_data = eth_dev->data;
		avp->port_id = eth_dev->data->port_id;
		avp->host_mbuf_size = host_info->mbuf_size;
		avp->host_features = host_info->features;
		rte_spinlock_init(&avp->lock);
		memcpy(&avp->ethaddr.addr_bytes[0],
		       host_info->ethaddr, ETHER_ADDR_LEN);
		/* adjust max values to not exceed our max */
		avp->max_tx_queues =
			RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
		avp->max_rx_queues =
			RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
	} else {
		/* Re-attaching during migration */

		/* TODO... requires validation of host values */
		if ((host_info->features & avp->features) != avp->features) {
			PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
				    avp->features, host_info->features);
			/* this should not be possible; continue for now */
		}
	}

	/* the device id is allowed to change over migrations */
	avp->device_id = host_info->device_id;

	/* translate incoming host addresses to guest address space */
	PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
		    host_info->tx_phys);
	PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
		    host_info->alloc_phys);
	for (i = 0; i < avp->max_tx_queues; i++) {
		avp->tx_q[i] = avp_dev_translate_address(eth_dev,
			host_info->tx_phys + (i * host_info->tx_size));

		avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
			host_info->alloc_phys + (i * host_info->alloc_size));
	}

	PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
		    host_info->rx_phys);
	PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
		    host_info->free_phys);
	for (i = 0; i < avp->max_rx_queues; i++) {
		avp->rx_q[i] = avp_dev_translate_address(eth_dev,
			host_info->rx_phys + (i * host_info->rx_size));
		avp->free_q[i] = avp_dev_translate_address(eth_dev,
			host_info->free_phys + (i * host_info->free_size));
	}

	PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
		    host_info->req_phys);
	PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
		    host_info->resp_phys);
	PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
		    host_info->sync_phys);
	PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
		    host_info->mbuf_phys);
	avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
	avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
	avp->sync_addr =
		avp_dev_translate_address(eth_dev, host_info->sync_phys);
	avp->mbuf_addr =
		avp_dev_translate_address(eth_dev, host_info->mbuf_phys);

	/*
	 * store the host mbuf virtual address so that we can calculate
	 * relative offsets for each mbuf as they are processed
	 */
	avp->host_mbuf_addr = host_info->mbuf_va;
	avp->host_sync_addr = host_info->sync_va;

	/*
	 * store the maximum packet length that is supported by the host.
	 */
	avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
	PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
				host_info->max_rx_pkt_len);

	return 0;
}

/*
 * This function is based on probe() function in avp_pci.c
 * It returns 0 on success.
 */
static int
eth_avp_dev_init(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp =
		AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_pci_device *pci_dev;
	int ret;

	pci_dev = AVP_DEV_TO_PCI(eth_dev);
	eth_dev->dev_ops = &avp_eth_dev_ops;
	eth_dev->rx_pkt_burst = &avp_recv_pkts;
	eth_dev->tx_pkt_burst = &avp_xmit_pkts;

	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
		/*
		 * no setup required on secondary processes.  All data is saved
		 * in dev_private by the primary process. All resource should
		 * be mapped to the same virtual address so all pointers should
		 * be valid.
		 */
		if (eth_dev->data->scattered_rx) {
			PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
			eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
			eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
		}
		return 0;
	}

	rte_eth_copy_pci_info(eth_dev, pci_dev);

	eth_dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE;

	/* Check current migration status */
	if (avp_dev_migration_pending(eth_dev)) {
		PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
		return -EBUSY;
	}

	/* Check BAR resources */
	ret = avp_dev_check_regions(eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
			    ret);
		return ret;
	}

	/* Enable interrupts */
	ret = avp_dev_setup_interrupts(eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
		return ret;
	}

	/* Handle each subtype */
	ret = avp_dev_create(pci_dev, eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
		return ret;
	}

	/* Allocate memory for storing MAC addresses */
	eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0);
	if (eth_dev->data->mac_addrs == NULL) {
		PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
			    ETHER_ADDR_LEN);
		return -ENOMEM;
	}

	/* Get a mac from device config */
	ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);

	return 0;
}

static int
eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
{
	int ret;

	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
		return -EPERM;

	if (eth_dev->data == NULL)
		return 0;

	ret = avp_dev_disable_interrupts(eth_dev);
	if (ret != 0) {
		PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret);
		return ret;
	}

	if (eth_dev->data->mac_addrs != NULL) {
		rte_free(eth_dev->data->mac_addrs);
		eth_dev->data->mac_addrs = NULL;
	}

	return 0;
}

static int
eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
		  struct rte_pci_device *pci_dev)
{
	struct rte_eth_dev *eth_dev;
	int ret;

	eth_dev = rte_eth_dev_pci_allocate(pci_dev,
					   sizeof(struct avp_adapter));
	if (eth_dev == NULL)
		return -ENOMEM;

	ret = eth_avp_dev_init(eth_dev);
	if (ret)
		rte_eth_dev_pci_release(eth_dev);

	return ret;
}

static int
eth_avp_pci_remove(struct rte_pci_device *pci_dev)
{
	return rte_eth_dev_pci_generic_remove(pci_dev,
					      eth_avp_dev_uninit);
}

static struct rte_pci_driver rte_avp_pmd = {
	.id_table = pci_id_avp_map,
	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
	.probe = eth_avp_pci_probe,
	.remove = eth_avp_pci_remove,
};

static int
avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
			 struct avp_dev *avp)
{
	unsigned int max_rx_pkt_len;

	max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;

	if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
	    (max_rx_pkt_len > avp->host_mbuf_size)) {
		/*
		 * If the guest MTU is greater than either the host or guest
		 * buffers then chained mbufs have to be enabled in the TX
		 * direction.  It is assumed that the application will not need
		 * to send packets larger than their max_rx_pkt_len (MRU).
		 */
		return 1;
	}

	if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
	    (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
		/*
		 * If the host MRU is greater than its own mbuf size or the
		 * guest mbuf size then chained mbufs have to be enabled in the
		 * RX direction.
		 */
		return 1;
	}

	return 0;
}

static int
avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
		       uint16_t rx_queue_id,
		       uint16_t nb_rx_desc,
		       unsigned int socket_id,
		       const struct rte_eth_rxconf *rx_conf,
		       struct rte_mempool *pool)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_pktmbuf_pool_private *mbp_priv;
	struct avp_queue *rxq;

	if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
		PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
			    rx_queue_id, eth_dev->data->nb_rx_queues);
		return -EINVAL;
	}

	/* Save mbuf pool pointer */
	avp->pool = pool;

	/* Save the local mbuf size */
	mbp_priv = rte_mempool_get_priv(pool);
	avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
	avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;

	if (avp_dev_enable_scattered(eth_dev, avp)) {
		if (!eth_dev->data->scattered_rx) {
			PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
			eth_dev->data->scattered_rx = 1;
			eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
			eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
		}
	}

	PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
		    avp->max_rx_pkt_len,
		    eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
		    avp->host_mbuf_size,
		    avp->guest_mbuf_size);

	/* allocate a queue object */
	rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (rxq == NULL) {
		PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
		return -ENOMEM;
	}

	/* save back pointers to AVP and Ethernet devices */
	rxq->avp = avp;
	rxq->dev_data = eth_dev->data;
	eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;

	/* setup the queue receive mapping for the current queue. */
	_avp_set_rx_queue_mappings(eth_dev, rx_queue_id);

	PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);

	(void)nb_rx_desc;
	(void)rx_conf;
	return 0;
}

static int
avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
		       uint16_t tx_queue_id,
		       uint16_t nb_tx_desc,
		       unsigned int socket_id,
		       const struct rte_eth_txconf *tx_conf)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct avp_queue *txq;

	if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
		PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
			    tx_queue_id, eth_dev->data->nb_tx_queues);
		return -EINVAL;
	}

	/* allocate a queue object */
	txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (txq == NULL) {
		PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
		return -ENOMEM;
	}

	/* only the configured set of transmit queues are used */
	txq->queue_id = tx_queue_id;
	txq->queue_base = tx_queue_id;
	txq->queue_limit = tx_queue_id;

	/* save back pointers to AVP and Ethernet devices */
	txq->avp = avp;
	txq->dev_data = eth_dev->data;
	eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;

	PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);

	(void)nb_tx_desc;
	(void)tx_conf;
	return 0;
}

static inline int
_avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b)
{
	uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
	uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
	return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
}

static inline int
_avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
{
	struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

	if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->d_addr) == 0)) {
		/* allow all packets destined to our address */
		return 0;
	}

	if (likely(is_broadcast_ether_addr(&eth->d_addr))) {
		/* allow all broadcast packets */
		return 0;
	}

	if (likely(is_multicast_ether_addr(&eth->d_addr))) {
		/* allow all multicast packets */
		return 0;
	}

	if (avp->flags & AVP_F_PROMISC) {
		/* allow all packets when in promiscuous mode */
		return 0;
	}

	return -1;
}

#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
static inline void
__avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
{
	struct rte_avp_desc *first_buf;
	struct rte_avp_desc *pkt_buf;
	unsigned int pkt_len;
	unsigned int nb_segs;
	void *pkt_data;
	unsigned int i;

	first_buf = avp_dev_translate_buffer(avp, buf);

	i = 0;
	pkt_len = 0;
	nb_segs = first_buf->nb_segs;
	do {
		/* Adjust pointers for guest addressing */
		pkt_buf = avp_dev_translate_buffer(avp, buf);
		if (pkt_buf == NULL)
			rte_panic("bad buffer: segment %u has an invalid address %p\n",
				  i, buf);
		pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
		if (pkt_data == NULL)
			rte_panic("bad buffer: segment %u has a NULL data pointer\n",
				  i);
		if (pkt_buf->data_len == 0)
			rte_panic("bad buffer: segment %u has 0 data length\n",
				  i);
		pkt_len += pkt_buf->data_len;
		nb_segs--;
		i++;

	} while (nb_segs && (buf = pkt_buf->next) != NULL);

	if (nb_segs != 0)
		rte_panic("bad buffer: expected %u segments found %u\n",
			  first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
	if (pkt_len != first_buf->pkt_len)
		rte_panic("bad buffer: expected length %u found %u\n",
			  first_buf->pkt_len, pkt_len);
}

#define avp_dev_buffer_sanity_check(a, b) \
	__avp_dev_buffer_sanity_check((a), (b))

#else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */

#define avp_dev_buffer_sanity_check(a, b) do {} while (0)

#endif

/*
 * Copy a host buffer chain to a set of mbufs.	This function assumes that
 * there exactly the required number of mbufs to copy all source bytes.
 */
static inline struct rte_mbuf *
avp_dev_copy_from_buffers(struct avp_dev *avp,
			  struct rte_avp_desc *buf,
			  struct rte_mbuf **mbufs,
			  unsigned int count)
{
	struct rte_mbuf *m_previous = NULL;
	struct rte_avp_desc *pkt_buf;
	unsigned int total_length = 0;
	unsigned int copy_length;
	unsigned int src_offset;
	struct rte_mbuf *m;
	uint16_t ol_flags;
	uint16_t vlan_tci;
	void *pkt_data;
	unsigned int i;

	avp_dev_buffer_sanity_check(avp, buf);

	/* setup the first source buffer */
	pkt_buf = avp_dev_translate_buffer(avp, buf);
	pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
	total_length = pkt_buf->pkt_len;
	src_offset = 0;

	if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
		ol_flags = PKT_RX_VLAN_PKT;
		vlan_tci = pkt_buf->vlan_tci;
	} else {
		ol_flags = 0;
		vlan_tci = 0;
	}

	for (i = 0; (i < count) && (buf != NULL); i++) {
		/* fill each destination buffer */
		m = mbufs[i];

		if (m_previous != NULL)
			m_previous->next = m;

		m_previous = m;

		do {
			/*
			 * Copy as many source buffers as will fit in the
			 * destination buffer.
			 */
			copy_length = RTE_MIN((avp->guest_mbuf_size -
					       rte_pktmbuf_data_len(m)),
					      (pkt_buf->data_len -
					       src_offset));
			rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
					       rte_pktmbuf_data_len(m)),
				   RTE_PTR_ADD(pkt_data, src_offset),
				   copy_length);
			rte_pktmbuf_data_len(m) += copy_length;
			src_offset += copy_length;

			if (likely(src_offset == pkt_buf->data_len)) {
				/* need a new source buffer */
				buf = pkt_buf->next;
				if (buf != NULL) {
					pkt_buf = avp_dev_translate_buffer(
						avp, buf);
					pkt_data = avp_dev_translate_buffer(
						avp, pkt_buf->data);
					src_offset = 0;
				}
			}

			if (unlikely(rte_pktmbuf_data_len(m) ==
				     avp->guest_mbuf_size)) {
				/* need a new destination mbuf */
				break;
			}

		} while (buf != NULL);
	}

	m = mbufs[0];
	m->ol_flags = ol_flags;
	m->nb_segs = count;
	rte_pktmbuf_pkt_len(m) = total_length;
	m->vlan_tci = vlan_tci;

	__rte_mbuf_sanity_check(m, 1);

	return m;
}

static uint16_t
avp_recv_scattered_pkts(void *rx_queue,
			struct rte_mbuf **rx_pkts,
			uint16_t nb_pkts)
{
	struct avp_queue *rxq = (struct avp_queue *)rx_queue;
	struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
	struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
	struct avp_dev *avp = rxq->avp;
	struct rte_avp_desc *pkt_buf;
	struct rte_avp_fifo *free_q;
	struct rte_avp_fifo *rx_q;
	struct rte_avp_desc *buf;
	unsigned int count, avail, n;
	unsigned int guest_mbuf_size;
	struct rte_mbuf *m;
	unsigned int required;
	unsigned int buf_len;
	unsigned int port_id;
	unsigned int i;

	if (unlikely(avp->flags & AVP_F_DETACHED)) {
		/* VM live migration in progress */
		return 0;
	}

	guest_mbuf_size = avp->guest_mbuf_size;
	port_id = avp->port_id;
	rx_q = avp->rx_q[rxq->queue_id];
	free_q = avp->free_q[rxq->queue_id];

	/* setup next queue to service */
	rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
		(rxq->queue_id + 1) : rxq->queue_base;

	/* determine how many slots are available in the free queue */
	count = avp_fifo_free_count(free_q);

	/* determine how many packets are available in the rx queue */
	avail = avp_fifo_count(rx_q);

	/* determine how many packets can be received */
	count = RTE_MIN(count, avail);
	count = RTE_MIN(count, nb_pkts);
	count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);

	if (unlikely(count == 0)) {
		/* no free buffers, or no buffers on the rx queue */
		return 0;
	}

	/* retrieve pending packets */
	n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
	PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
		   count, rx_q);

	count = 0;
	for (i = 0; i < n; i++) {
		/* prefetch next entry while processing current one */
		if (i + 1 < n) {
			pkt_buf = avp_dev_translate_buffer(avp,
							   avp_bufs[i + 1]);
			rte_prefetch0(pkt_buf);
		}
		buf = avp_bufs[i];

		/* Peek into the first buffer to determine the total length */
		pkt_buf = avp_dev_translate_buffer(avp, buf);
		buf_len = pkt_buf->pkt_len;

		/* Allocate enough mbufs to receive the entire packet */
		required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
		if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
			rxq->dev_data->rx_mbuf_alloc_failed++;
			continue;
		}

		/* Copy the data from the buffers to our mbufs */
		m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);

		/* finalize mbuf */
		m->port = port_id;

		if (_avp_mac_filter(avp, m) != 0) {
			/* silently discard packets not destined to our MAC */
			rte_pktmbuf_free(m);
			continue;
		}

		/* return new mbuf to caller */
		rx_pkts[count++] = m;
		rxq->bytes += buf_len;
	}

	rxq->packets += count;

	/* return the buffers to the free queue */
	avp_fifo_put(free_q, (void **)&avp_bufs[0], n);

	return count;
}


static uint16_t
avp_recv_pkts(void *rx_queue,
	      struct rte_mbuf **rx_pkts,
	      uint16_t nb_pkts)
{
	struct avp_queue *rxq = (struct avp_queue *)rx_queue;
	struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
	struct avp_dev *avp = rxq->avp;
	struct rte_avp_desc *pkt_buf;
	struct rte_avp_fifo *free_q;
	struct rte_avp_fifo *rx_q;
	unsigned int count, avail, n;
	unsigned int pkt_len;
	struct rte_mbuf *m;
	char *pkt_data;
	unsigned int i;

	if (unlikely(avp->flags & AVP_F_DETACHED)) {
		/* VM live migration in progress */
		return 0;
	}

	rx_q = avp->rx_q[rxq->queue_id];
	free_q = avp->free_q[rxq->queue_id];

	/* setup next queue to service */
	rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
		(rxq->queue_id + 1) : rxq->queue_base;

	/* determine how many slots are available in the free queue */
	count = avp_fifo_free_count(free_q);

	/* determine how many packets are available in the rx queue */
	avail = avp_fifo_count(rx_q);

	/* determine how many packets can be received */
	count = RTE_MIN(count, avail);
	count = RTE_MIN(count, nb_pkts);
	count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);

	if (unlikely(count == 0)) {
		/* no free buffers, or no buffers on the rx queue */
		return 0;
	}

	/* retrieve pending packets */
	n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
	PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
		   count, rx_q);

	count = 0;
	for (i = 0; i < n; i++) {
		/* prefetch next entry while processing current one */
		if (i < n - 1) {
			pkt_buf = avp_dev_translate_buffer(avp,
							   avp_bufs[i + 1]);
			rte_prefetch0(pkt_buf);
		}

		/* Adjust host pointers for guest addressing */
		pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
		pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
		pkt_len = pkt_buf->pkt_len;

		if (unlikely((pkt_len > avp->guest_mbuf_size) ||
			     (pkt_buf->nb_segs > 1))) {
			/*
			 * application should be using the scattered receive
			 * function
			 */
			rxq->errors++;
			continue;
		}

		/* process each packet to be transmitted */
		m = rte_pktmbuf_alloc(avp->pool);
		if (unlikely(m == NULL)) {
			rxq->dev_data->rx_mbuf_alloc_failed++;
			continue;
		}

		/* copy data out of the host buffer to our buffer */
		m->data_off = RTE_PKTMBUF_HEADROOM;
		rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);

		/* initialize the local mbuf */
		rte_pktmbuf_data_len(m) = pkt_len;
		rte_pktmbuf_pkt_len(m) = pkt_len;
		m->port = avp->port_id;

		if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
			m->ol_flags = PKT_RX_VLAN_PKT;
			m->vlan_tci = pkt_buf->vlan_tci;
		}

		if (_avp_mac_filter(avp, m) != 0) {
			/* silently discard packets not destined to our MAC */
			rte_pktmbuf_free(m);
			continue;
		}

		/* return new mbuf to caller */
		rx_pkts[count++] = m;
		rxq->bytes += pkt_len;
	}

	rxq->packets += count;

	/* return the buffers to the free queue */
	avp_fifo_put(free_q, (void **)&avp_bufs[0], n);

	return count;
}

/*
 * Copy a chained mbuf to a set of host buffers.  This function assumes that
 * there are sufficient destination buffers to contain the entire source
 * packet.
 */
static inline uint16_t
avp_dev_copy_to_buffers(struct avp_dev *avp,
			struct rte_mbuf *mbuf,
			struct rte_avp_desc **buffers,
			unsigned int count)
{
	struct rte_avp_desc *previous_buf = NULL;
	struct rte_avp_desc *first_buf = NULL;
	struct rte_avp_desc *pkt_buf;
	struct rte_avp_desc *buf;
	size_t total_length;
	struct rte_mbuf *m;
	size_t copy_length;
	size_t src_offset;
	char *pkt_data;
	unsigned int i;

	__rte_mbuf_sanity_check(mbuf, 1);

	m = mbuf;
	src_offset = 0;
	total_length = rte_pktmbuf_pkt_len(m);
	for (i = 0; (i < count) && (m != NULL); i++) {
		/* fill each destination buffer */
		buf = buffers[i];

		if (i < count - 1) {
			/* prefetch next entry while processing this one */
			pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
			rte_prefetch0(pkt_buf);
		}

		/* Adjust pointers for guest addressing */
		pkt_buf = avp_dev_translate_buffer(avp, buf);
		pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);

		/* setup the buffer chain */
		if (previous_buf != NULL)
			previous_buf->next = buf;
		else
			first_buf = pkt_buf;

		previous_buf = pkt_buf;

		do {
			/*
			 * copy as many source mbuf segments as will fit in the
			 * destination buffer.
			 */
			copy_length = RTE_MIN((avp->host_mbuf_size -
					       pkt_buf->data_len),
					      (rte_pktmbuf_data_len(m) -
					       src_offset));
			rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
				   RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
					       src_offset),
				   copy_length);
			pkt_buf->data_len += copy_length;
			src_offset += copy_length;

			if (likely(src_offset == rte_pktmbuf_data_len(m))) {
				/* need a new source buffer */
				m = m->next;
				src_offset = 0;
			}

			if (unlikely(pkt_buf->data_len ==
				     avp->host_mbuf_size)) {
				/* need a new destination buffer */
				break;
			}

		} while (m != NULL);
	}

	first_buf->nb_segs = count;
	first_buf->pkt_len = total_length;

	if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
		first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
		first_buf->vlan_tci = mbuf->vlan_tci;
	}

	avp_dev_buffer_sanity_check(avp, buffers[0]);

	return total_length;
}


static uint16_t
avp_xmit_scattered_pkts(void *tx_queue,
			struct rte_mbuf **tx_pkts,
			uint16_t nb_pkts)
{
	struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
				       RTE_AVP_MAX_MBUF_SEGMENTS)];
	struct avp_queue *txq = (struct avp_queue *)tx_queue;
	struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
	struct avp_dev *avp = txq->avp;
	struct rte_avp_fifo *alloc_q;
	struct rte_avp_fifo *tx_q;
	unsigned int count, avail, n;
	unsigned int orig_nb_pkts;
	struct rte_mbuf *m;
	unsigned int required;
	unsigned int segments;
	unsigned int tx_bytes;
	unsigned int i;

	orig_nb_pkts = nb_pkts;
	if (unlikely(avp->flags & AVP_F_DETACHED)) {
		/* VM live migration in progress */
		/* TODO ... buffer for X packets then drop? */
		txq->errors += nb_pkts;
		return 0;
	}

	tx_q = avp->tx_q[txq->queue_id];
	alloc_q = avp->alloc_q[txq->queue_id];

	/* limit the number of transmitted packets to the max burst size */
	if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
		nb_pkts = AVP_MAX_TX_BURST;

	/* determine how many buffers are available to copy into */
	avail = avp_fifo_count(alloc_q);
	if (unlikely(avail > (AVP_MAX_TX_BURST *
			      RTE_AVP_MAX_MBUF_SEGMENTS)))
		avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;

	/* determine how many slots are available in the transmit queue */
	count = avp_fifo_free_count(tx_q);

	/* determine how many packets can be sent */
	nb_pkts = RTE_MIN(count, nb_pkts);

	/* determine how many packets will fit in the available buffers */
	count = 0;
	segments = 0;
	for (i = 0; i < nb_pkts; i++) {
		m = tx_pkts[i];
		if (likely(i < (unsigned int)nb_pkts - 1)) {
			/* prefetch next entry while processing this one */
			rte_prefetch0(tx_pkts[i + 1]);
		}
		required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
			avp->host_mbuf_size;

		if (unlikely((required == 0) ||
			     (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
			break;
		else if (unlikely(required + segments > avail))
			break;
		segments += required;
		count++;
	}
	nb_pkts = count;

	if (unlikely(nb_pkts == 0)) {
		/* no available buffers, or no space on the tx queue */
		txq->errors += orig_nb_pkts;
		return 0;
	}

	PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
		   nb_pkts, tx_q);

	/* retrieve sufficient send buffers */
	n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
	if (unlikely(n != segments)) {
		PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
			   "n=%u, segments=%u, orig=%u\n",
			   n, segments, orig_nb_pkts);
		txq->errors += orig_nb_pkts;
		return 0;
	}

	tx_bytes = 0;
	count = 0;
	for (i = 0; i < nb_pkts; i++) {
		/* process each packet to be transmitted */
		m = tx_pkts[i];

		/* determine how many buffers are required for this packet */
		required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
			avp->host_mbuf_size;

		tx_bytes += avp_dev_copy_to_buffers(avp, m,
						    &avp_bufs[count], required);
		tx_bufs[i] = avp_bufs[count];
		count += required;

		/* free the original mbuf */
		rte_pktmbuf_free(m);
	}

	txq->packets += nb_pkts;
	txq->bytes += tx_bytes;

#ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
	for (i = 0; i < nb_pkts; i++)
		avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
#endif

	/* send the packets */
	n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
	if (unlikely(n != orig_nb_pkts))
		txq->errors += (orig_nb_pkts - n);

	return n;
}


static uint16_t
avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	struct avp_queue *txq = (struct avp_queue *)tx_queue;
	struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
	struct avp_dev *avp = txq->avp;
	struct rte_avp_desc *pkt_buf;
	struct rte_avp_fifo *alloc_q;
	struct rte_avp_fifo *tx_q;
	unsigned int count, avail, n;
	struct rte_mbuf *m;
	unsigned int pkt_len;
	unsigned int tx_bytes;
	char *pkt_data;
	unsigned int i;

	if (unlikely(avp->flags & AVP_F_DETACHED)) {
		/* VM live migration in progress */
		/* TODO ... buffer for X packets then drop?! */
		txq->errors++;
		return 0;
	}

	tx_q = avp->tx_q[txq->queue_id];
	alloc_q = avp->alloc_q[txq->queue_id];

	/* limit the number of transmitted packets to the max burst size */
	if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
		nb_pkts = AVP_MAX_TX_BURST;

	/* determine how many buffers are available to copy into */
	avail = avp_fifo_count(alloc_q);

	/* determine how many slots are available in the transmit queue */
	count = avp_fifo_free_count(tx_q);

	/* determine how many packets can be sent */
	count = RTE_MIN(count, avail);
	count = RTE_MIN(count, nb_pkts);

	if (unlikely(count == 0)) {
		/* no available buffers, or no space on the tx queue */
		txq->errors += nb_pkts;
		return 0;
	}

	PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
		   count, tx_q);

	/* retrieve sufficient send buffers */
	n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
	if (unlikely(n != count)) {
		txq->errors++;
		return 0;
	}

	tx_bytes = 0;
	for (i = 0; i < count; i++) {
		/* prefetch next entry while processing the current one */
		if (i < count - 1) {
			pkt_buf = avp_dev_translate_buffer(avp,
							   avp_bufs[i + 1]);
			rte_prefetch0(pkt_buf);
		}

		/* process each packet to be transmitted */
		m = tx_pkts[i];

		/* Adjust pointers for guest addressing */
		pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
		pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
		pkt_len = rte_pktmbuf_pkt_len(m);

		if (unlikely((pkt_len > avp->guest_mbuf_size) ||
					 (pkt_len > avp->host_mbuf_size))) {
			/*
			 * application should be using the scattered transmit
			 * function; send it truncated to avoid the performance
			 * hit of having to manage returning the already
			 * allocated buffer to the free list.  This should not
			 * happen since the application should have set the
			 * max_rx_pkt_len based on its MTU and it should be
			 * policing its own packet sizes.
			 */
			txq->errors++;
			pkt_len = RTE_MIN(avp->guest_mbuf_size,
					  avp->host_mbuf_size);
		}

		/* copy data out of our mbuf and into the AVP buffer */
		rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
		pkt_buf->pkt_len = pkt_len;
		pkt_buf->data_len = pkt_len;
		pkt_buf->nb_segs = 1;
		pkt_buf->next = NULL;

		if (m->ol_flags & PKT_TX_VLAN_PKT) {
			pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
			pkt_buf->vlan_tci = m->vlan_tci;
		}

		tx_bytes += pkt_len;

		/* free the original mbuf */
		rte_pktmbuf_free(m);
	}

	txq->packets += count;
	txq->bytes += tx_bytes;

	/* send the packets */
	n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);

	return n;
}

static void
avp_dev_rx_queue_release(void *rx_queue)
{
	struct avp_queue *rxq = (struct avp_queue *)rx_queue;
	struct avp_dev *avp = rxq->avp;
	struct rte_eth_dev_data *data = avp->dev_data;
	unsigned int i;

	for (i = 0; i < avp->num_rx_queues; i++) {
		if (data->rx_queues[i] == rxq)
			data->rx_queues[i] = NULL;
	}
}

static void
avp_dev_tx_queue_release(void *tx_queue)
{
	struct avp_queue *txq = (struct avp_queue *)tx_queue;
	struct avp_dev *avp = txq->avp;
	struct rte_eth_dev_data *data = avp->dev_data;
	unsigned int i;

	for (i = 0; i < avp->num_tx_queues; i++) {
		if (data->tx_queues[i] == txq)
			data->tx_queues[i] = NULL;
	}
}

static int
avp_dev_configure(struct rte_eth_dev *eth_dev)
{
	struct rte_pci_device *pci_dev = AVP_DEV_TO_PCI(eth_dev);
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_avp_device_info *host_info;
	struct rte_avp_device_config config;
	int mask = 0;
	void *addr;
	int ret;

	rte_spinlock_lock(&avp->lock);
	if (avp->flags & AVP_F_DETACHED) {
		PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
		ret = -ENOTSUP;
		goto unlock;
	}

	addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
	host_info = (struct rte_avp_device_info *)addr;

	/* Setup required number of queues */
	_avp_set_queue_counts(eth_dev);

	mask = (ETH_VLAN_STRIP_MASK |
		ETH_VLAN_FILTER_MASK |
		ETH_VLAN_EXTEND_MASK);
	avp_vlan_offload_set(eth_dev, mask);

	/* update device config */
	memset(&config, 0, sizeof(config));
	config.device_id = host_info->device_id;
	config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
	config.driver_version = AVP_DPDK_DRIVER_VERSION;
	config.features = avp->features;
	config.num_tx_queues = avp->num_tx_queues;
	config.num_rx_queues = avp->num_rx_queues;

	ret = avp_dev_ctrl_set_config(eth_dev, &config);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
			    ret);
		goto unlock;
	}

	avp->flags |= AVP_F_CONFIGURED;
	ret = 0;

unlock:
	rte_spinlock_unlock(&avp->lock);
	return ret;
}

static int
avp_dev_start(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	int ret;

	rte_spinlock_lock(&avp->lock);
	if (avp->flags & AVP_F_DETACHED) {
		PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
		ret = -ENOTSUP;
		goto unlock;
	}

	/* disable features that we do not support */
	eth_dev->data->dev_conf.rxmode.hw_ip_checksum = 0;
	eth_dev->data->dev_conf.rxmode.hw_vlan_filter = 0;
	eth_dev->data->dev_conf.rxmode.hw_vlan_extend = 0;
	eth_dev->data->dev_conf.rxmode.hw_strip_crc = 0;

	/* update link state */
	ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
			    ret);
		goto unlock;
	}

	/* remember current link state */
	avp->flags |= AVP_F_LINKUP;

	ret = 0;

unlock:
	rte_spinlock_unlock(&avp->lock);
	return ret;
}

static void
avp_dev_stop(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	int ret;

	rte_spinlock_lock(&avp->lock);
	if (avp->flags & AVP_F_DETACHED) {
		PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
		goto unlock;
	}

	/* remember current link state */
	avp->flags &= ~AVP_F_LINKUP;

	/* update link state */
	ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
			    ret);
	}

unlock:
	rte_spinlock_unlock(&avp->lock);
}

static void
avp_dev_close(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	int ret;

	rte_spinlock_lock(&avp->lock);
	if (avp->flags & AVP_F_DETACHED) {
		PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
		goto unlock;
	}

	/* remember current link state */
	avp->flags &= ~AVP_F_LINKUP;
	avp->flags &= ~AVP_F_CONFIGURED;

	ret = avp_dev_disable_interrupts(eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
		/* continue */
	}

	/* update device state */
	ret = avp_dev_ctrl_shutdown(eth_dev);
	if (ret < 0) {
		PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
			    ret);
		/* continue */
	}

unlock:
	rte_spinlock_unlock(&avp->lock);
}

static int
avp_dev_link_update(struct rte_eth_dev *eth_dev,
					__rte_unused int wait_to_complete)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	struct rte_eth_link *link = &eth_dev->data->dev_link;

	link->link_speed = ETH_SPEED_NUM_10G;
	link->link_duplex = ETH_LINK_FULL_DUPLEX;
	link->link_status = !!(avp->flags & AVP_F_LINKUP);

	return -1;
}

static void
avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);

	rte_spinlock_lock(&avp->lock);
	if ((avp->flags & AVP_F_PROMISC) == 0) {
		avp->flags |= AVP_F_PROMISC;
		PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
			    eth_dev->data->port_id);
	}
	rte_spinlock_unlock(&avp->lock);
}

static void
avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);

	rte_spinlock_lock(&avp->lock);
	if ((avp->flags & AVP_F_PROMISC) != 0) {
		avp->flags &= ~AVP_F_PROMISC;
		PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
			    eth_dev->data->port_id);
	}
	rte_spinlock_unlock(&avp->lock);
}

static void
avp_dev_info_get(struct rte_eth_dev *eth_dev,
		 struct rte_eth_dev_info *dev_info)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);

	dev_info->driver_name = "rte_avp_pmd";
	dev_info->pci_dev = RTE_DEV_TO_PCI(eth_dev->device);
	dev_info->max_rx_queues = avp->max_rx_queues;
	dev_info->max_tx_queues = avp->max_tx_queues;
	dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
	dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
	dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
	if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
		dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
		dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
	}
}

static void
avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);

	if (mask & ETH_VLAN_STRIP_MASK) {
		if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
			if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
				avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
			else
				avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
		} else {
			PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
		}
	}

	if (mask & ETH_VLAN_FILTER_MASK) {
		if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
			PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
	}

	if (mask & ETH_VLAN_EXTEND_MASK) {
		if (eth_dev->data->dev_conf.rxmode.hw_vlan_extend)
			PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
	}
}

static void
avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	unsigned int i;

	for (i = 0; i < avp->num_rx_queues; i++) {
		struct avp_queue *rxq = avp->dev_data->rx_queues[i];

		if (rxq) {
			stats->ipackets += rxq->packets;
			stats->ibytes += rxq->bytes;
			stats->ierrors += rxq->errors;

			stats->q_ipackets[i] += rxq->packets;
			stats->q_ibytes[i] += rxq->bytes;
			stats->q_errors[i] += rxq->errors;
		}
	}

	for (i = 0; i < avp->num_tx_queues; i++) {
		struct avp_queue *txq = avp->dev_data->tx_queues[i];

		if (txq) {
			stats->opackets += txq->packets;
			stats->obytes += txq->bytes;
			stats->oerrors += txq->errors;

			stats->q_opackets[i] += txq->packets;
			stats->q_obytes[i] += txq->bytes;
			stats->q_errors[i] += txq->errors;
		}
	}
}

static void
avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
{
	struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
	unsigned int i;

	for (i = 0; i < avp->num_rx_queues; i++) {
		struct avp_queue *rxq = avp->dev_data->rx_queues[i];

		if (rxq) {
			rxq->bytes = 0;
			rxq->packets = 0;
			rxq->errors = 0;
		}
	}

	for (i = 0; i < avp->num_tx_queues; i++) {
		struct avp_queue *txq = avp->dev_data->tx_queues[i];

		if (txq) {
			txq->bytes = 0;
			txq->packets = 0;
			txq->errors = 0;
		}
	}
}

RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);