1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
# Copyright (c) 2024 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The comparison tables.
"""
import pandas as pd
from numpy import mean, std, percentile
from copy import deepcopy
from ..utils.constants import Constants as C
from ..utils.utils import relative_change_stdev
def select_comp_data(
data: pd.DataFrame,
selected: dict,
normalize: bool=False,
remove_outliers: bool=False,
raw_data: bool=False
) -> pd.DataFrame:
"""Select data for a comparison table.
:param data: Data to be filtered for the comparison table.
:param selected: A dictionary with parameters and their values selected by
the user.
:param normalize: If True, the data is normalized to CPU frequency
Constants.NORM_FREQUENCY.
:param remove_outliers: If True the outliers are removed before
generating the table.
:param raw_data: If True, returns data as it is in parquets without any
processing. It is used for "download raw data" feature.
:type data: pandas.DataFrame
:type selected: dict
:type normalize: bool
:type remove_outliers: bool
:type raw_data: bool
:returns: A data frame with selected data.
:rtype: pandas.DataFrame
"""
def _calculate_statistics(
data_in: pd.DataFrame,
ttype: str,
drv: str,
norm_factor: float,
remove_outliers: bool=False
) -> pd.DataFrame:
"""Calculates mean value and standard deviation for provided data.
:param data_in: Input data for calculations.
:param ttype: The test type.
:param drv: The driver.
:param norm_factor: The data normalization factor.
:param remove_outliers: If True the outliers are removed before
generating the table.
:type data_in: pandas.DataFrame
:type ttype: str
:type drv: str
:type norm_factor: float
:type remove_outliers: bool
:returns: A pandas dataframe with: test name, mean value, standard
deviation and unit.
:rtype: pandas.DataFrame
"""
d_data = {
"name": list(),
"mean": list(),
"stdev": list(),
"unit": list()
}
for itm in data_in["test_id"].unique().tolist():
itm_lst = itm.split(".")
test = itm_lst[-1].rsplit("-", 1)[0]
if "hoststack" in itm:
test_type = f"hoststack-{ttype}"
else:
test_type = ttype
df = data_in.loc[(data_in["test_id"] == itm)]
l_df = df[C.VALUE_ITER[test_type]].to_list()
if len(l_df) and isinstance(l_df[0], list):
tmp_df = list()
for l_itm in l_df:
tmp_df.extend(l_itm)
l_df = tmp_df
try:
if remove_outliers:
q1 = percentile(l_df, 25, method=C.COMP_PERCENTILE_METHOD)
q3 = percentile(l_df, 75, method=C.COMP_PERCENTILE_METHOD)
irq = q3 - q1
lif = q1 - C.COMP_OUTLIER_TYPE * irq
uif = q3 + C.COMP_OUTLIER_TYPE * irq
l_df = [i for i in l_df if i >= lif and i <= uif]
mean_val = mean(l_df)
std_val = std(l_df)
except (TypeError, ValueError):
continue
d_data["name"].append(f"{test.replace(f'{drv}-', '')}-{ttype}")
d_data["mean"].append(int(mean_val * norm_factor))
d_data["stdev"].append(int(std_val * norm_factor))
d_data["unit"].append(df[C.UNIT[test_type]].to_list()[0])
return pd.DataFrame(d_data)
lst_df = list()
for itm in selected:
if itm["ttype"] in ("NDR", "PDR", "Latency"):
test_type = "ndrpdr"
elif itm["ttype"] in ("CPS", "RPS", "BPS"):
test_type = "hoststack"
else:
test_type = itm["ttype"].lower()
dutver = itm["dutver"].split("-", 1) # 0 -> release, 1 -> dut version
tmp_df = pd.DataFrame(data.loc[(
(data["passed"] == True) &
(data["dut_type"] == itm["dut"]) &
(data["dut_version"] == dutver[1]) &
(data["test_type"] == test_type) &
(data["release"] == dutver[0])
)])
drv = "" if itm["driver"] == "dpdk" else itm["driver"].replace("_", "-")
core = str() if itm["dut"] == "trex" else itm["core"].lower()
ttype = "ndrpdr" if itm["ttype"] in ("NDR", "PDR", "Latency") \
else itm["ttype"].lower()
tmp_df = tmp_df[
(tmp_df.job.str.endswith(itm["tbed"])) &
(tmp_df.test_id.str.contains(
(
f"^.*[.|-]{itm['nic']}.*{itm['frmsize'].lower()}-"
f"{core}-{drv}.*-{ttype}$"
),
regex=True
))
]
if itm["driver"] == "dpdk":
for drv in C.DRIVERS:
tmp_df.drop(
tmp_df[tmp_df.test_id.str.contains(f"-{drv}-")].index,
inplace=True
)
# Change the data type from ndrpdr to one of ("NDR", "PDR", "Latency")
if test_type == "ndrpdr":
tmp_df = tmp_df.assign(test_type=itm["ttype"].lower())
if not tmp_df.empty:
if normalize:
if itm["ttype"] == "Latency":
norm_factor = C.FREQUENCY[itm["tbed"]] / C.NORM_FREQUENCY
else:
norm_factor = C.NORM_FREQUENCY / C.FREQUENCY[itm["tbed"]]
else:
norm_factor = 1.0
if not raw_data:
tmp_df = _calculate_statistics(
tmp_df,
itm["ttype"].lower(),
itm["driver"],
norm_factor,
remove_outliers=remove_outliers
)
lst_df.append(tmp_df)
if len(lst_df) == 1:
df = lst_df[0]
elif len(lst_df) > 1:
df = pd.concat(
lst_df,
ignore_index=True,
copy=False
)
else:
df = pd.DataFrame()
return df
def comparison_table(
data: pd.DataFrame,
selected: dict,
normalize: bool,
format: str="html",
remove_outliers: bool=False,
raw_data: bool=False
) -> tuple:
"""Generate a comparison table.
:param data: Iterative data for the comparison table.
:param selected: A dictionary with parameters and their values selected by
the user.
:param normalize: If True, the data is normalized to CPU frequency
Constants.NORM_FREQUENCY.
:param format: The output format of the table:
- html: To be displayed on html page, the values are shown in millions
of the unit.
- csv: To be downloaded as a CSV file the values are stored in base
units.
:param remove_outliers: If True the outliers are removed before
generating the table.
:param raw_data: If True, returns data as it is in parquets without any
processing. It is used for "download raw data" feature.
:type data: pandas.DataFrame
:type selected: dict
:type normalize: bool
:type format: str
:type remove_outliers: bool
:type raw_data: bool
:returns: A tuple with the tabe title and the comparison table.
:rtype: tuple[str, pandas.DataFrame]
"""
def _create_selection(sel: dict) -> list:
"""Transform the complex dictionary with user selection to list
of simple items.
:param sel: A complex dictionary with user selection.
:type sel: dict
:returns: A list of simple items.
:rtype: list
"""
l_infra = sel["infra"].split("-")
selection = list()
for core in sel["core"]:
for fsize in sel["frmsize"]:
for ttype in sel["ttype"]:
selection.append({
"dut": sel["dut"],
"dutver": sel["dutver"],
"tbed": f"{l_infra[0]}-{l_infra[1]}",
"nic": l_infra[2],
"driver": l_infra[-1].replace("_", "-"),
"core": core,
"frmsize": fsize,
"ttype": ttype
})
return selection
# Select reference data
r_sel = deepcopy(selected["reference"]["selection"])
r_selection = _create_selection(r_sel)
r_data = select_comp_data(
data, r_selection, normalize, remove_outliers, raw_data
)
# Select compare data
c_sel = deepcopy(selected["reference"]["selection"])
c_params = selected["compare"]
if c_params["parameter"] in ("core", "frmsize", "ttype"):
c_sel[c_params["parameter"]] = [c_params["value"], ]
else:
c_sel[c_params["parameter"]] = c_params["value"]
c_selection = _create_selection(c_sel)
c_data = select_comp_data(
data, c_selection, normalize, remove_outliers, raw_data
)
if raw_data:
r_data["ref/cmp"] = "reference"
c_data["ref/cmp"] = "compare"
return str(), pd.concat([r_data, c_data], ignore_index=True, copy=False)
if r_data.empty or c_data.empty:
return str(), pd.DataFrame()
if format == "html" and "Latency" not in r_sel["ttype"]:
unit_factor, s_unit_factor = (1e6, "M")
else:
unit_factor, s_unit_factor = (1, str())
# Create Table title and titles of columns with data
params = list(r_sel)
params.remove(c_params["parameter"])
lst_title = list()
for param in params:
value = r_sel[param]
if isinstance(value, list):
lst_title.append("|".join(value))
else:
lst_title.append(value)
title = "Comparison for: " + "-".join(lst_title)
r_name = r_sel[c_params["parameter"]]
if isinstance(r_name, list):
r_name = "|".join(r_name)
c_name = c_params["value"]
l_name, l_r_mean, l_r_std, l_c_mean, l_c_std, l_rc_mean, l_rc_std, unit = \
list(), list(), list(), list(), list(), list(), list(), set()
for _, row in r_data.iterrows():
if c_params["parameter"] in ("core", "frmsize", "ttype"):
l_cmp = row["name"].split("-")
if c_params["parameter"] == "core":
c_row = c_data[
(c_data.name.str.contains(l_cmp[0])) &
(c_data.name.str.contains("-".join(l_cmp[2:])))
]
elif c_params["parameter"] == "frmsize":
c_row = c_data[c_data.name.str.contains("-".join(l_cmp[1:]))]
elif c_params["parameter"] == "ttype":
regex = r"^" + f"{'-'.join(l_cmp[:-1])}" + r"-.{3}$"
c_row = c_data[c_data.name.str.contains(regex, regex=True)]
else:
c_row = c_data[c_data["name"] == row["name"]]
if not c_row.empty:
r_mean = row["mean"]
r_std = row["stdev"]
c_mean = c_row["mean"].values[0]
c_std = c_row["stdev"].values[0]
if r_mean == 0.0 or c_mean == 0.0:
break
unit.add(f"{s_unit_factor}{row['unit']}")
l_name.append(row["name"])
l_r_mean.append(r_mean / unit_factor)
l_r_std.append(r_std / unit_factor)
l_c_mean.append(c_mean / unit_factor)
l_c_std.append(c_std / unit_factor)
delta, d_stdev = relative_change_stdev(r_mean, c_mean, r_std, c_std)
l_rc_mean.append(delta)
l_rc_std.append(d_stdev)
s_unit = "|".join(unit)
df_cmp = pd.DataFrame.from_dict({
"Test Name": l_name,
f"{r_name} Mean [{s_unit}]": l_r_mean,
f"{r_name} Stdev [{s_unit}]": l_r_std,
f"{c_name} Mean [{s_unit}]": l_c_mean,
f"{c_name} Stdev [{s_unit}]": l_c_std,
"Relative Change Mean [%]": l_rc_mean,
"Relative Change Stdev [%]": l_rc_std
})
df_cmp.sort_values(
by="Relative Change Mean [%]",
ascending=False,
inplace=True
)
return (title, df_cmp)
|