1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
# Copyright (c) 2023 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Prepare data for Plotly Dash applications.
"""
import logging
import resource
import awswrangler as wr
import pandas as pd
import pyarrow as pa
from yaml import load, FullLoader, YAMLError
from datetime import datetime, timedelta
from time import time
from pytz import UTC
from awswrangler.exceptions import EmptyDataFrame, NoFilesFound
from pyarrow.lib import ArrowInvalid, ArrowNotImplementedError
from ..utils.constants import Constants as C
# If True, pyarrow.Schema is generated. See also condition in the method
# _write_parquet_schema.
# To generate schema, select only one data set in data.yaml file.
GENERATE_SCHEMA = False
class Data:
"""Gets the data from parquets and stores it for further use by dash
applications.
"""
def __init__(self, data_spec_file: str) -> None:
"""Initialize the Data object.
:param data_spec_file: Path to file specifying the data to be read from
parquets.
:type data_spec_file: str
:raises RuntimeError: if it is not possible to open data_spec_file or it
is not a valid yaml file.
"""
# Inputs:
self._data_spec_file = data_spec_file
# Specification of data to be read from parquets:
self._data_spec = list()
# Data frame to keep the data:
self._data = {
"statistics": pd.DataFrame(),
"trending": pd.DataFrame(),
"iterative": pd.DataFrame(),
"coverage": pd.DataFrame()
}
# Read from files:
try:
with open(self._data_spec_file, "r") as file_read:
self._data_spec = load(file_read, Loader=FullLoader)
except IOError as err:
raise RuntimeError(
f"Not possible to open the file {self._data_spec_file,}\n{err}"
)
except YAMLError as err:
raise RuntimeError(
f"An error occurred while parsing the specification file "
f"{self._data_spec_file,}\n"
f"{err}"
)
@property
def data(self):
return self._data
@staticmethod
def _get_list_of_files(
path,
last_modified_begin=None,
last_modified_end=None,
days=None
) -> list:
"""Get list of interested files stored in S3 compatible storage and
returns it.
:param path: S3 prefix (accepts Unix shell-style wildcards)
(e.g. s3://bucket/prefix) or list of S3 objects paths
(e.g. [s3://bucket/key0, s3://bucket/key1]).
:param last_modified_begin: Filter the s3 files by the Last modified
date of the object. The filter is applied only after list all s3
files.
:param last_modified_end: Filter the s3 files by the Last modified date
of the object. The filter is applied only after list all s3 files.
:param days: Number of days to filter.
:type path: Union[str, List[str]]
:type last_modified_begin: datetime, optional
:type last_modified_end: datetime, optional
:type days: integer, optional
:returns: List of file names.
:rtype: list
"""
file_list = list()
if days:
last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days)
try:
file_list = wr.s3.list_objects(
path=path,
suffix="parquet",
last_modified_begin=last_modified_begin,
last_modified_end=last_modified_end
)
logging.debug("\n".join(file_list))
except NoFilesFound as err:
logging.error(f"No parquets found.\n{err}")
except EmptyDataFrame as err:
logging.error(f"No data.\n{err}")
return file_list
def _validate_columns(self, data_type: str) -> str:
"""Check if all columns are present in the dataframe.
:param data_type: The data type defined in data.yaml
:type data_type: str
:returns: Error message if validation fails, otherwise empty string.
:rtype: str
"""
defined_columns = set()
for data_set in self._data_spec:
if data_set.get("data_type", str()) == data_type:
defined_columns.update(data_set.get("columns", set()))
if not defined_columns:
return "No columns defined in the data set(s)."
if self.data[data_type].empty:
return "No data."
ret_msg = str()
for col in defined_columns:
if col not in self.data[data_type].columns:
if not ret_msg:
ret_msg = "Missing columns: "
else:
ret_msg += ", "
ret_msg += f"{col}"
return ret_msg
@staticmethod
def _write_parquet_schema(
path,
partition_filter=None,
columns=None,
validate_schema=False,
last_modified_begin=None,
last_modified_end=None,
days=None
) -> None:
"""Auxiliary function to write parquet schemas. Use it instead of
"_create_dataframe_from_parquet" in "read_all_data".
:param path: S3 prefix (accepts Unix shell-style wildcards)
(e.g. s3://bucket/prefix) or list of S3 objects paths
(e.g. [s3://bucket/key0, s3://bucket/key1]).
:param partition_filter: Callback Function filters to apply on PARTITION
columns (PUSH-DOWN filter). This function MUST receive a single
argument (Dict[str, str]) where keys are partitions names and values
are partitions values. Partitions values will be always strings
extracted from S3. This function MUST return a bool, True to read
the partition or False to ignore it. Ignored if dataset=False.
:param columns: Names of columns to read from the file(s).
:param validate_schema: Check that individual file schemas are all the
same / compatible. Schemas within a folder prefix should all be the
same. Disable if you have schemas that are different and want to
disable this check.
:param last_modified_begin: Filter the s3 files by the Last modified
date of the object. The filter is applied only after list all s3
files.
:param last_modified_end: Filter the s3 files by the Last modified date
of the object. The filter is applied only after list all s3 files.
:param days: Number of days to filter.
:type path: Union[str, List[str]]
:type partition_filter: Callable[[Dict[str, str]], bool], optional
:type columns: List[str], optional
:type validate_schema: bool, optional
:type last_modified_begin: datetime, optional
:type last_modified_end: datetime, optional
:type days: integer, optional
"""
if days:
last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days)
df = wr.s3.read_parquet(
path=path,
path_suffix="parquet",
ignore_empty=True,
validate_schema=validate_schema,
use_threads=True,
dataset=True,
columns=columns,
partition_filter=partition_filter,
last_modified_begin=last_modified_begin,
last_modified_end=last_modified_end,
chunked=1
)
for itm in df:
try:
# Specify the condition or remove it:
if all((
pd.api.types.is_string_dtype(itm["<column_name>"]),
pd.api.types.is_string_dtype(itm["telemetry"][0])
)):
schema = pa.Schema.from_pandas(itm)
pa.parquet.write_metadata(
schema, f"{C.PATH_TO_SCHEMAS}_tmp_schema"
)
logging.info(schema.to_string(
truncate_metadata=False,
show_field_metadata=True,
show_schema_metadata=True
))
break
except KeyError:
pass
@staticmethod
def _create_dataframe_from_parquet(
path,
partition_filter=None,
columns=None,
validate_schema=False,
last_modified_begin=None,
last_modified_end=None,
days=None,
schema=None
) -> pd.DataFrame:
"""Read parquet stored in S3 compatible storage and returns Pandas
Dataframe.
:param path: S3 prefix (accepts Unix shell-style wildcards)
(e.g. s3://bucket/prefix) or list of S3 objects paths
(e.g. [s3://bucket/key0, s3://bucket/key1]).
:param partition_filter: Callback Function filters to apply on PARTITION
columns (PUSH-DOWN filter). This function MUST receive a single
argument (Dict[str, str]) where keys are partitions names and values
are partitions values. Partitions values will be always strings
extracted from S3. This function MUST return a bool, True to read
the partition or False to ignore it. Ignored if dataset=False.
:param columns: Names of columns to read from the file(s).
:param validate_schema: Check that individual file schemas are all the
same / compatible. Schemas within a folder prefix should all be the
same. Disable if you have schemas that are different and want to
disable this check.
:param last_modified_begin: Filter the s3 files by the Last modified
date of the object. The filter is applied only after list all s3
files.
:param last_modified_end: Filter the s3 files by the Last modified date
of the object. The filter is applied only after list all s3 files.
:param days: Number of days to filter.
:param schema: Path to schema to use when reading data from the parquet.
:type path: Union[str, List[str]]
:type partition_filter: Callable[[Dict[str, str]], bool], optional
:type columns: List[str], optional
:type validate_schema: bool, optional
:type last_modified_begin: datetime, optional
:type last_modified_end: datetime, optional
:type days: integer, optional
:type schema: string
:returns: Pandas DataFrame or None if DataFrame cannot be fetched.
:rtype: DataFrame
"""
df = pd.DataFrame()
start = time()
if days:
last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days)
try:
df = wr.s3.read_parquet(
path=path,
path_suffix="parquet",
ignore_empty=True,
schema=schema,
validate_schema=validate_schema,
use_threads=True,
dataset=True,
columns=columns,
partition_filter=partition_filter,
last_modified_begin=last_modified_begin,
last_modified_end=last_modified_end,
dtype_backend="pyarrow"
)
df.info(verbose=True, memory_usage="deep")
logging.debug(
f"\nCreation of dataframe {path} took: {time() - start}\n"
)
except (ArrowInvalid, ArrowNotImplementedError) as err:
logging.error(f"Reading of data from parquets FAILED.\n{repr(err)}")
except NoFilesFound as err:
logging.error(
f"Reading of data from parquets FAILED.\n"
f"No parquets found in specified time period.\n"
f"Nr of days: {days}\n"
f"last_modified_begin: {last_modified_begin}\n"
f"{repr(err)}"
)
except EmptyDataFrame as err:
logging.error(
f"Reading of data from parquets FAILED.\n"
f"No data in parquets in specified time period.\n"
f"Nr of days: {days}\n"
f"last_modified_begin: {last_modified_begin}\n"
f"{repr(err)}"
)
return df
def read_all_data(self, days: int=None) -> dict:
"""Read all data necessary for all applications.
:param days: Number of days to filter. If None, all data will be
downloaded.
:type days: int
:returns: A dictionary where keys are names of parquets and values are
the pandas dataframes with fetched data.
:rtype: dict(str: pandas.DataFrame)
"""
data_lists = {
"statistics": list(),
"trending": list(),
"iterative": list(),
"coverage": list()
}
logging.info("\n\nReading data:\n" + "-" * 13 + "\n")
for data_set in self._data_spec:
logging.info(
f"\n\nReading data for {data_set['data_type']} "
f"{data_set['partition_name']} {data_set.get('release', '')}\n"
)
schema_file = data_set.get("schema", None)
if schema_file:
try:
schema = pa.parquet.read_schema(
f"{C.PATH_TO_SCHEMAS}{schema_file}"
)
except FileNotFoundError as err:
logging.error(repr(err))
logging.error("Proceeding without schema.")
schema = None
else:
schema = None
partition_filter = lambda part: True \
if part[data_set["partition"]] == data_set["partition_name"] \
else False
if data_set["data_type"] in ("trending", "statistics"):
time_period = days
else:
time_period = None
if GENERATE_SCHEMA:
# Generate schema:
Data._write_parquet_schema(
path=data_set["path"],
partition_filter=partition_filter,
columns=data_set.get("columns", None),
days=time_period
)
return
# Read data:
data = Data._create_dataframe_from_parquet(
path=data_set["path"],
partition_filter=partition_filter,
columns=data_set.get("columns", None),
days=time_period,
schema=schema
)
if data_set["data_type"] in ("iterative", "coverage"):
data["release"] = data_set["release"]
data["release"] = data["release"].astype("category")
data_lists[data_set["data_type"]].append(data)
logging.info(
"\n\nData post-processing, validation and summary:\n" +
"-" * 45 + "\n"
)
for key in self._data.keys():
logging.info(f"\n\nDataframe {key}:\n")
self._data[key] = pd.concat(
data_lists[key],
ignore_index=True,
copy=False
)
self._data[key].info(verbose=True, memory_usage="deep")
err_msg = self._validate_columns(key)
if err_msg:
self._data[key] = pd.DataFrame()
logging.error(
f"Data validation FAILED.\n"
f"{err_msg}\n"
"Generated dataframe replaced by an empty dataframe."
)
mem_alloc = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1000
logging.info(f"\n\nMemory allocation: {mem_alloc:.0f}MB\n")
return self._data
|