aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/report/graphs.py
blob: 0627411d0f7523159a9ba30cd4b6d1124c2773ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) 2024 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implementation of graphs for iterative data.
"""

import plotly.graph_objects as go
import pandas as pd

from copy import deepcopy
from numpy import percentile

from ..utils.constants import Constants as C
from ..utils.utils import get_color, get_hdrh_latencies


def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
    """Select the data for graphs and tables from the provided data frame.

    :param data: Data frame with data for graphs and tables.
    :param itm: Item (in this case job name) which data will be selected from
        the input data frame.
    :type data: pandas.DataFrame
    :type itm: str
    :returns: A data frame with selected data.
    :rtype: pandas.DataFrame
    """

    phy = itm["phy"].split("-")
    if len(phy) == 4:
        topo, arch, nic, drv = phy
        if drv == "dpdk":
            drv = ""
        else:
            drv += "-"
            drv = drv.replace("_", "-")
    else:
        return None

    if itm["testtype"] in ("ndr", "pdr"):
        test_type = "ndrpdr"
    elif itm["testtype"] == "mrr":
        test_type = "mrr"
    elif itm["area"] == "hoststack":
        test_type = "hoststack"
    df = data.loc[(
        (data["release"] == itm["rls"]) &
        (data["test_type"] == test_type) &
        (data["passed"] == True)
    )]

    core = str() if itm["dut"] == "trex" else f"{itm['core']}"
    ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
    regex_test = \
        f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$"
    df = df[
        (df.job.str.endswith(f"{topo}-{arch}")) &
        (df.dut_version.str.contains(itm["dutver"].replace(".r", "-r").\
            replace("rls", "release"))) &
        (df.test_id.str.contains(regex_test, regex=True))
    ]

    return df


def graph_iterative(data: pd.DataFrame, sel: list, layout: dict,
        normalize: bool=False, remove_outliers: bool=False) -> tuple:
    """Generate the statistical box graph with iterative data (MRR, NDR and PDR,
    for PDR also Latencies).

    :param data: Data frame with iterative data.
    :param sel: Selected tests.
    :param layout: Layout of plot.ly graph.
    :param normalize: If True, the data is normalized to CPU frequency
        Constants.NORM_FREQUENCY.
    :param remove_outliers: If True the outliers are removed before
        generating the table.
    :type data: pandas.DataFrame
    :type sel: list
    :type layout: dict
    :type normalize: bool
    :type remove_outliers: bool
    :returns: Tuple of graphs - throughput and latency.
    :rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure)
    """

    def get_y_values(data, y_data_max, param, norm_factor, release=str(),
                     remove_outliers=False):
        if param == "result_receive_rate_rate_values":
            if release == "rls2402":
                y_vals_raw = data["result_receive_rate_rate_avg"].to_list()
            else:
                y_vals_raw = data[param].to_list()[0]
        else:
            y_vals_raw = data[param].to_list()
        y_data = [(y * norm_factor) for y in y_vals_raw]

        if remove_outliers:
            try:
                q1 = percentile(y_data, 25, method=C.COMP_PERCENTILE_METHOD)
                q3 = percentile(y_data, 75, method=C.COMP_PERCENTILE_METHOD)
                irq = q3 - q1
                lif = q1 - C.COMP_OUTLIER_TYPE * irq
                uif = q3 + C.COMP_OUTLIER_TYPE * irq
                y_data = [i for i in y_data if i >= lif and i <= uif]
            except TypeError:
                pass
        try:
            y_data_max = max(max(y_data), y_data_max)
        except TypeError:
            y_data_max = 0
        return y_data, y_data_max

    fig_tput = None
    fig_band = None
    fig_lat = None

    tput_traces = list()
    y_tput_max = 0
    y_units = set()

    lat_traces = list()
    y_lat_max = 0
    x_lat = list()

    band_traces = list()
    y_band_max = 0
    y_band_units = set()
    x_band = list()

    for idx, itm in enumerate(sel):

        itm_data = select_iterative_data(data, itm)
        if itm_data.empty:
            continue

        phy = itm["phy"].split("-")
        topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
        norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY[topo_arch]) \
            if normalize else 1.0

        if itm["area"] == "hoststack":
            ttype = f"hoststack-{itm['testtype']}"
        else:
            ttype = itm["testtype"]

        y_units.update(itm_data[C.UNIT[ttype]].unique().tolist())

        y_data, y_tput_max = get_y_values(
            itm_data,
            y_tput_max,
            C.VALUE_ITER[ttype],
            norm_factor,
            itm["rls"],
            remove_outliers
        )

        nr_of_samples = len(y_data)

        customdata = list()
        metadata = {
            "csit release": itm["rls"],
            "dut": itm["dut"],
            "dut version": itm["dutver"],
            "infra": itm["phy"],
            "test": (
                f"{itm['area']}-{itm['framesize']}-{itm['core']}-"
                f"{itm['test']}-{itm['testtype']}"
            )
        }

        if itm["testtype"] == "mrr" and itm["rls"] in ("rls2306", "rls2310"):
            trial_run = "trial"
            metadata["csit-ref"] = (
                f"{itm_data['job'].to_list()[0]}/",
                f"{itm_data['build'].to_list()[0]}"
            )
            customdata = [{"metadata": metadata}, ] * nr_of_samples
        else:
            trial_run = "run"
            for _, row in itm_data.iterrows():
                metadata["csit-ref"] = f"{row['job']}/{row['build']}"
                customdata.append({"metadata": deepcopy(metadata)})
        tput_kwargs = dict(
            y=y_data,
            name=(
                f"{idx + 1}. "
                f"({nr_of_samples:02d} "
                f"{trial_run}{'s' if nr_of_samples > 1 else ''}) "
                f"{itm['id']}"
            ),
            hoverinfo=u"y+name",
            boxpoints="all",
            jitter=0.3,
            marker=dict(color=get_color(idx)),
            customdata=customdata
        )
        tput_traces.append(go.Box(**tput_kwargs))

        if ttype in ("ndr", "pdr", "mrr"):
            y_band, y_band_max = get_y_values(
                itm_data,
                y_band_max,
                C.VALUE_ITER[f"{ttype}-bandwidth"],
                norm_factor,
                remove_outliers=remove_outliers
            )
            if not all(pd.isna(y_band)):
                y_band_units.update(
                    itm_data[C.UNIT[f"{ttype}-bandwidth"]].unique().\
                        dropna().tolist()
                )
                band_kwargs = dict(
                    y=y_band,
                    name=(
                        f"{idx + 1}. "
                        f"({nr_of_samples:02d} "
                        f"run{'s' if nr_of_samples > 1 else ''}) "
                        f"{itm['id']}"
                    ),
                    hoverinfo=u"y+name",
                    boxpoints="all",
                    jitter=0.3,
                    marker=dict(color=get_color(idx)),
                    customdata=customdata
                )
                x_band.append(idx + 1)
                band_traces.append(go.Box(**band_kwargs))

        if ttype == "pdr":
            y_lat, y_lat_max = get_y_values(
                itm_data,
                y_lat_max,
                C.VALUE_ITER["latency"],
                1 / norm_factor,
                remove_outliers=remove_outliers
            )
            if not all(pd.isna(y_lat)):
                customdata = list()
                for _, row in itm_data.iterrows():
                    hdrh = get_hdrh_latencies(
                        row,
                        f"{metadata['infra']}-{metadata['test']}"
                    )
                    metadata["csit-ref"] = f"{row['job']}/{row['build']}"
                    customdata.append({
                        "metadata": deepcopy(metadata),
                        "hdrh": hdrh
                    })
                nr_of_samples = len(y_lat)
                lat_kwargs = dict(
                    y=y_lat,
                    name=(
                        f"{idx + 1}. "
                        f"({nr_of_samples:02d} "
                        f"run{u's' if nr_of_samples > 1 else u''}) "
                        f"{itm['id']}"
                    ),
                    hoverinfo="all",
                    boxpoints="all",
                    jitter=0.3,
                    marker=dict(color=get_color(idx)),
                    customdata=customdata
                )
                x_lat.append(idx + 1)
                lat_traces.append(go.Box(**lat_kwargs))

    if tput_traces:
        pl_tput = deepcopy(layout["plot-throughput"])
        pl_tput["xaxis"]["tickvals"] = [i for i in range(len(sel))]
        pl_tput["xaxis"]["ticktext"] = [str(i + 1) for i in range(len(sel))]
        pl_tput["yaxis"]["title"] = f"Throughput [{'|'.join(sorted(y_units))}]"
        if y_tput_max:
            pl_tput["yaxis"]["range"] = [0, int(y_tput_max) + 2e6]
        fig_tput = go.Figure(data=tput_traces, layout=pl_tput)

    if band_traces:
        pl_band = deepcopy(layout["plot-bandwidth"])
        pl_band["xaxis"]["tickvals"] = [i for i in range(len(x_band))]
        pl_band["xaxis"]["ticktext"] = x_band
        pl_band["yaxis"]["title"] = \
            f"Bandwidth [{'|'.join(sorted(y_band_units))}]"
        if y_band_max:
            pl_band["yaxis"]["range"] = [0, int(y_band_max) + 2e9]
        fig_band = go.Figure(data=band_traces, layout=pl_band)

    if lat_traces:
        pl_lat = deepcopy(layout["plot-latency"])
        pl_lat["xaxis"]["tickvals"] = [i for i in range(len(x_lat))]
        pl_lat["xaxis"]["ticktext"] = x_lat
        if y_lat_max:
            pl_lat["yaxis"]["range"] = [0, int(y_lat_max) + 5]
        fig_lat = go.Figure(data=lat_traces, layout=pl_lat)

    return fig_tput, fig_band, fig_lat