1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
|
# Copyright (c) 2024 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions used by Dash applications.
"""
import pandas as pd
import plotly.graph_objects as go
import dash_bootstrap_components as dbc
import hdrh.histogram
import hdrh.codec
from math import sqrt
from dash import dcc, no_update, html
from datetime import datetime
from ..utils.constants import Constants as C
from ..utils.url_processing import url_encode
from ..utils.trigger import Trigger
def get_color(idx: int) -> str:
"""Returns a color from the list defined in Constants.PLOT_COLORS defined by
its index.
:param idx: Index of the color.
:type idx: int
:returns: Color defined by hex code.
:trype: str
"""
return C.PLOT_COLORS[idx % len(C.PLOT_COLORS)]
def show_tooltip(tooltips:dict, id: str, title: str,
clipboard_id: str=None) -> list:
"""Generate list of elements to display a text (e.g. a title) with a
tooltip and optionaly with Copy&Paste icon and the clipboard
functionality enabled.
:param tooltips: Dictionary with tooltips.
:param id: Tooltip ID.
:param title: A text for which the tooltip will be displayed.
:param clipboard_id: If defined, a Copy&Paste icon is displayed and the
clipboard functionality is enabled.
:type tooltips: dict
:type id: str
:type title: str
:type clipboard_id: str
:returns: List of elements to display a text with a tooltip and
optionaly with Copy&Paste icon.
:rtype: list
"""
return [
dcc.Clipboard(target_id=clipboard_id, title="Copy URL") \
if clipboard_id else str(),
f"{title} ",
dbc.Badge(
id=id,
children="?",
pill=True,
color="white",
text_color="info",
class_name="border ms-1",
),
dbc.Tooltip(
children=tooltips.get(id, str()),
target=id,
placement="auto"
)
]
def label(key: str) -> str:
"""Returns a label for input elements (dropdowns, ...).
If the label is not defined, the function returns the provided key.
:param key: The key to the label defined in Constants.LABELS.
:type key: str
:returns: Label.
:rtype: str
"""
return C.LABELS.get(key, key)
def sync_checklists(options: list, sel: list, all: list, id: str) -> tuple:
"""Synchronize a checklist with defined "options" with its "All" checklist.
:param options: List of options for the cheklist.
:param sel: List of selected options.
:param all: List of selected option from "All" checklist.
:param id: ID of a checklist to be used for synchronization.
:returns: Tuple of lists with otions for both checklists.
:rtype: tuple of lists
"""
opts = {v["value"] for v in options}
if id =="all":
sel = list(opts) if all else list()
else:
all = ["all", ] if set(sel) == opts else list()
return sel, all
def list_tests(selection: dict) -> list:
"""Transform list of tests to a list of dictionaries usable by checkboxes.
:param selection: List of tests to be displayed in "Selected tests" window.
:type selection: list
:returns: List of dictionaries with "label", "value" pairs for a checkbox.
:rtype: list
"""
if selection:
return [{"label": v["id"], "value": v["id"]} for v in selection]
else:
return list()
def get_date(s_date: str) -> datetime:
"""Transform string reprezentation of date to datetime.datetime data type.
:param s_date: String reprezentation of date.
:type s_date: str
:returns: Date as datetime.datetime.
:rtype: datetime.datetime
"""
return datetime(int(s_date[0:4]), int(s_date[5:7]), int(s_date[8:10]))
def gen_new_url(url_components: dict, params: dict) -> str:
"""Generate a new URL with encoded parameters.
:param url_components: Dictionary with URL elements. It should contain
"scheme", "netloc" and "path".
:param url_components: URL parameters to be encoded to the URL.
:type parsed_url: dict
:type params: dict
:returns Encoded URL with parameters.
:rtype: str
"""
if url_components:
return url_encode(
{
"scheme": url_components.get("scheme", ""),
"netloc": url_components.get("netloc", ""),
"path": url_components.get("path", ""),
"params": params
}
)
else:
return str()
def get_duts(df: pd.DataFrame) -> list:
"""Get the list of DUTs from the pre-processed information about jobs.
:param df: DataFrame with information about jobs.
:type df: pandas.DataFrame
:returns: Alphabeticaly sorted list of DUTs.
:rtype: list
"""
return sorted(list(df["dut"].unique()))
def get_ttypes(df: pd.DataFrame, dut: str) -> list:
"""Get the list of test types from the pre-processed information about
jobs.
:param df: DataFrame with information about jobs.
:param dut: The DUT for which the list of test types will be populated.
:type df: pandas.DataFrame
:type dut: str
:returns: Alphabeticaly sorted list of test types.
:rtype: list
"""
return sorted(list(df.loc[(df["dut"] == dut)]["ttype"].unique()))
def get_cadences(df: pd.DataFrame, dut: str, ttype: str) -> list:
"""Get the list of cadences from the pre-processed information about
jobs.
:param df: DataFrame with information about jobs.
:param dut: The DUT for which the list of cadences will be populated.
:param ttype: The test type for which the list of cadences will be
populated.
:type df: pandas.DataFrame
:type dut: str
:type ttype: str
:returns: Alphabeticaly sorted list of cadences.
:rtype: list
"""
return sorted(list(df.loc[(
(df["dut"] == dut) &
(df["ttype"] == ttype)
)]["cadence"].unique()))
def get_test_beds(df: pd.DataFrame, dut: str, ttype: str, cadence: str) -> list:
"""Get the list of test beds from the pre-processed information about
jobs.
:param df: DataFrame with information about jobs.
:param dut: The DUT for which the list of test beds will be populated.
:param ttype: The test type for which the list of test beds will be
populated.
:param cadence: The cadence for which the list of test beds will be
populated.
:type df: pandas.DataFrame
:type dut: str
:type ttype: str
:type cadence: str
:returns: Alphabeticaly sorted list of test beds.
:rtype: list
"""
return sorted(list(df.loc[(
(df["dut"] == dut) &
(df["ttype"] == ttype) &
(df["cadence"] == cadence)
)]["tbed"].unique()))
def get_job(df: pd.DataFrame, dut, ttype, cadence, testbed):
"""Get the name of a job defined by dut, ttype, cadence, test bed.
Input information comes from the control panel.
:param df: DataFrame with information about jobs.
:param dut: The DUT for which the job name will be created.
:param ttype: The test type for which the job name will be created.
:param cadence: The cadence for which the job name will be created.
:param testbed: The test bed for which the job name will be created.
:type df: pandas.DataFrame
:type dut: str
:type ttype: str
:type cadence: str
:type testbed: str
:returns: Job name.
:rtype: str
"""
return df.loc[(
(df["dut"] == dut) &
(df["ttype"] == ttype) &
(df["cadence"] == cadence) &
(df["tbed"] == testbed)
)]["job"].item()
def generate_options(opts: list, sort: bool=True) -> list:
"""Return list of options for radio items in control panel. The items in
the list are dictionaries with keys "label" and "value".
:params opts: List of options (str) to be used for the generated list.
:type opts: list
:returns: List of options (dict).
:rtype: list
"""
if sort:
opts = sorted(opts)
return [{"label": i, "value": i} for i in opts]
def set_job_params(df: pd.DataFrame, job: str) -> dict:
"""Create a dictionary with all options and values for (and from) the
given job.
:param df: DataFrame with information about jobs.
:params job: The name of job for and from which the dictionary will be
created.
:type df: pandas.DataFrame
:type job: str
:returns: Dictionary with all options and values for (and from) the
given job.
:rtype: dict
"""
l_job = job.split("-")
idx = -3 if "-x-" in job else -2
return {
"job": job,
"dut": l_job[1],
"ttype": l_job[3],
"cadence": l_job[4],
"tbed": "-".join(l_job[idx:]),
"duts": generate_options(get_duts(df)),
"ttypes": generate_options(get_ttypes(df, l_job[1])),
"cadences": generate_options(get_cadences(df, l_job[1], l_job[3])),
"tbeds": generate_options(
get_test_beds(df, l_job[1], l_job[3], l_job[4]))
}
def get_list_group_items(
items: list,
type: str,
colorize: bool=True,
add_index: bool=False
) -> list:
"""Generate list of ListGroupItems with checkboxes with selected items.
:param items: List of items to be displayed in the ListGroup.
:param type: The type part of an element ID.
:param colorize: If True, the color of labels is set, otherwise the default
color is used.
:param add_index: Add index to the list items.
:type items: list
:type type: str
:type colorize: bool
:type add_index: bool
:returns: List of ListGroupItems with checkboxes with selected items.
:rtype: list
"""
children = list()
for i, l in enumerate(items):
idx = f"{i + 1}. " if add_index else str()
label = f"{idx}{l['id']}" if isinstance(l, dict) else f"{idx}{l}"
children.append(
dbc.ListGroupItem(
children=[
dbc.Checkbox(
id={"type": type, "index": i},
label=label,
value=False,
label_class_name="m-0 p-0",
label_style={
"font-size": ".875em",
"color": get_color(i) if colorize else "#55595c"
},
class_name="info"
)
],
class_name="p-0"
)
)
return children
def relative_change_stdev(mean1, mean2, std1, std2):
"""Compute relative standard deviation of change of two values.
The "1" values are the base for comparison.
Results are returned as percentage (and percentual points for stdev).
Linearized theory is used, so results are wrong for relatively large stdev.
:param mean1: Mean of the first number.
:param mean2: Mean of the second number.
:param std1: Standard deviation estimate of the first number.
:param std2: Standard deviation estimate of the second number.
:type mean1: float
:type mean2: float
:type std1: float
:type std2: float
:returns: Relative change and its stdev.
:rtype: float
"""
mean1, mean2 = float(mean1), float(mean2)
quotient = mean2 / mean1
first = std1 / mean1
second = std2 / mean2
std = quotient * sqrt(first * first + second * second)
return (quotient - 1) * 100, std * 100
def get_hdrh_latencies(row: pd.Series, name: str) -> dict:
"""Get the HDRH latencies from the test data.
:param row: A row fron the data frame with test data.
:param name: The test name to be displayed as the graph title.
:type row: pandas.Series
:type name: str
:returns: Dictionary with HDRH latencies.
:rtype: dict
"""
latencies = {"name": name}
for key in C.LAT_HDRH:
try:
latencies[key] = row[key]
except KeyError:
return None
return latencies
def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
"""Generate HDR Latency histogram graphs.
:param data: HDRH data.
:param layout: Layout of plot.ly graph.
:type data: dict
:type layout: dict
:returns: HDR latency Histogram.
:rtype: plotly.graph_objects.Figure
"""
fig = None
traces = list()
for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
try:
decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
except (hdrh.codec.HdrLengthException, TypeError):
continue
previous_x = 0.0
prev_perc = 0.0
xaxis = list()
yaxis = list()
hovertext = list()
for item in decoded.get_recorded_iterator():
# The real value is "percentile".
# For 100%, we cut that down to "x_perc" to avoid
# infinity.
percentile = item.percentile_level_iterated_to
x_perc = min(percentile, C.PERCENTILE_MAX)
xaxis.append(previous_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"<b>{C.GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
f"Latency: {item.value_iterated_to}uSec"
)
next_x = 100.0 / (100.0 - x_perc)
xaxis.append(next_x)
yaxis.append(item.value_iterated_to)
hovertext.append(
f"<b>{C.GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
f"Latency: {item.value_iterated_to}uSec"
)
previous_x = next_x
prev_perc = percentile
traces.append(
go.Scatter(
x=xaxis,
y=yaxis,
name=C.GRAPH_LAT_HDRH_DESC[lat_name],
mode="lines",
legendgroup=C.GRAPH_LAT_HDRH_DESC[lat_name],
showlegend=bool(idx % 2),
line=dict(
color=get_color(int(idx/2)),
dash="solid",
width=1 if idx % 2 else 2
),
hovertext=hovertext,
hoverinfo="text"
)
)
if traces:
fig = go.Figure()
fig.add_traces(traces)
layout_hdrh = layout.get("plot-hdrh-latency", None)
if lat_hdrh:
fig.update_layout(layout_hdrh)
return fig
def navbar_trending(active: tuple):
"""Add nav element with navigation panel. It is placed on the top.
:param active: Tuple of boolean values defining the active items in the
navbar. True == active
:type active: tuple
:returns: Navigation bar.
:rtype: dbc.NavbarSimple
"""
children = list()
if C.START_TRENDING:
children.append(dbc.NavItem(dbc.NavLink(
C.TREND_TITLE,
active=active[0],
external_link=True,
href="/trending"
)))
if C.START_FAILURES:
children.append(dbc.NavItem(dbc.NavLink(
C.NEWS_TITLE,
active=active[1],
external_link=True,
href="/news"
)))
if C.START_STATISTICS:
children.append(dbc.NavItem(dbc.NavLink(
C.STATS_TITLE,
active=active[2],
external_link=True,
href="/stats"
)))
if C.START_SEARCH:
children.append(dbc.NavItem(dbc.NavLink(
C.SEARCH_TITLE,
active=active[3],
external_link=True,
href="/search"
)))
if C.START_DOC:
children.append(dbc.NavItem(dbc.NavLink(
"Documentation",
id="btn-documentation",
)))
return dbc.NavbarSimple(
children=children,
id="navbarsimple-main",
brand=C.BRAND,
brand_href="/",
brand_external_link=True,
class_name="p-2",
fluid=True
)
def navbar_report(active: tuple):
"""Add nav element with navigation panel. It is placed on the top.
:param active: Tuple of boolean values defining the active items in the
navbar. True == active
:type active: tuple
:returns: Navigation bar.
:rtype: dbc.NavbarSimple
"""
children = list()
if C.START_REPORT:
children.append(dbc.NavItem(dbc.NavLink(
C.REPORT_TITLE,
active=active[0],
external_link=True,
href="/report"
)))
if C.START_COMPARISONS:
children.append(dbc.NavItem(dbc.NavLink(
"Comparisons",
active=active[1],
external_link=True,
href="/comparisons"
)))
if C.START_COVERAGE:
children.append(dbc.NavItem(dbc.NavLink(
"Coverage Data",
active=active[2],
external_link=True,
href="/coverage"
)))
if C.START_SEARCH:
children.append(dbc.NavItem(dbc.NavLink(
C.SEARCH_TITLE,
active=active[3],
external_link=True,
href="/search"
)))
if C.START_DOC:
children.append(dbc.NavItem(dbc.NavLink(
"Documentation",
id="btn-documentation",
)))
return dbc.NavbarSimple(
children=children,
id="navbarsimple-main",
brand=C.BRAND,
brand_href="/",
brand_external_link=True,
class_name="p-2",
fluid=True
)
def filter_table_data(
store_table_data: list,
table_filter: str
) -> list:
"""Filter table data using user specified filter.
:param store_table_data: Table data represented as a list of records.
:param table_filter: User specified filter.
:type store_table_data: list
:type table_filter: str
:returns: A new table created by filtering of table data represented as
a list of records.
:rtype: list
"""
# Checks:
if not any((table_filter, store_table_data, )):
return store_table_data
def _split_filter_part(filter_part: str) -> tuple:
"""Split a part of filter into column name, operator and value.
A "part of filter" is a sting berween "&&" operator.
:param filter_part: A part of filter.
:type filter_part: str
:returns: Column name, operator, value
:rtype: tuple[str, str, str|float]
"""
for operator_type in C.OPERATORS:
for operator in operator_type:
if operator in filter_part:
name_p, val_p = filter_part.split(operator, 1)
name = name_p[name_p.find("{") + 1 : name_p.rfind("}")]
val_p = val_p.strip()
if (val_p[0] == val_p[-1] and val_p[0] in ("'", '"', '`')):
value = val_p[1:-1].replace("\\" + val_p[0], val_p[0])
else:
try:
value = float(val_p)
except ValueError:
value = val_p
return name, operator_type[0].strip(), value
return (None, None, None)
df = pd.DataFrame.from_records(store_table_data)
for filter_part in table_filter.split(" && "):
col_name, operator, filter_value = _split_filter_part(filter_part)
if operator == "contains":
df = df.loc[df[col_name].str.contains(filter_value, regex=True)]
elif operator in ("eq", "ne", "lt", "le", "gt", "ge"):
# These operators match pandas series operator method names.
df = df.loc[getattr(df[col_name], operator)(filter_value)]
elif operator == "datestartswith":
# This is a simplification of the front-end filtering logic,
# only works with complete fields in standard format.
# Currently not used in comparison tables.
df = df.loc[df[col_name].str.startswith(filter_value)]
return df.to_dict("records")
def sort_table_data(
store_table_data: list,
sort_by: list
) -> list:
"""Sort table data using user specified order.
:param store_table_data: Table data represented as a list of records.
:param sort_by: User specified sorting order (multicolumn).
:type store_table_data: list
:type sort_by: list
:returns: A new table created by sorting the table data represented as
a list of records.
:rtype: list
"""
# Checks:
if not any((sort_by, store_table_data, )):
return store_table_data
df = pd.DataFrame.from_records(store_table_data)
if len(sort_by):
dff = df.sort_values(
[col["column_id"] for col in sort_by],
ascending=[col["direction"] == "asc" for col in sort_by],
inplace=False
)
else:
# No sort is applied
dff = df
return dff.to_dict("records")
def show_trending_graph_data(
trigger: Trigger,
data: dict,
graph_layout: dict
) -> tuple:
"""Generates the data for the offcanvas displayed when a particular point in
a trending graph (daily data) is clicked on.
:param trigger: The information from trigger when the data point is clicked
on.
:param graph: The data from the clicked point in the graph.
:param graph_layout: The layout of the HDRH latency graph.
:type trigger: Trigger
:type graph: dict
:type graph_layout: dict
:returns: The data to be displayed on the offcanvas and the information to
show the offcanvas.
:rtype: tuple(list, list, bool)
"""
if trigger.idx == "tput":
idx = 0
elif trigger.idx == "bandwidth":
idx = 1
elif trigger.idx == "lat":
idx = len(data) - 1
else:
return list(), list(), False
try:
data = data[idx]["points"][0]
except (IndexError, KeyError, ValueError, TypeError):
return list(), list(), False
metadata = no_update
graph = list()
list_group_items = list()
for itm in data.get("text", None).split("<br>"):
if not itm:
continue
lst_itm = itm.split(": ")
if lst_itm[0] == "csit-ref":
list_group_item = dbc.ListGroupItem([
dbc.Badge(lst_itm[0]),
html.A(
lst_itm[1],
href=f"{C.URL_LOGS}{lst_itm[1]}",
target="_blank"
)
])
else:
list_group_item = dbc.ListGroupItem([
dbc.Badge(lst_itm[0]),
lst_itm[1]
])
list_group_items.append(list_group_item)
if trigger.idx == "tput":
title = "Throughput"
elif trigger.idx == "bandwidth":
title = "Bandwidth"
elif trigger.idx == "lat":
title = "Latency"
hdrh_data = data.get("customdata", None)
if hdrh_data:
graph = [dbc.Card(
class_name="gy-2 p-0",
children=[
dbc.CardHeader(hdrh_data.pop("name")),
dbc.CardBody(
dcc.Graph(
id="hdrh-latency-graph",
figure=graph_hdrh_latency(hdrh_data, graph_layout)
)
)
])
]
metadata = [
dbc.Card(
class_name="gy-2 p-0",
children=[
dbc.CardHeader(children=[
dcc.Clipboard(
target_id="tput-lat-metadata",
title="Copy",
style={"display": "inline-block"}
),
title
]),
dbc.CardBody(
dbc.ListGroup(list_group_items, flush=True),
id="tput-lat-metadata",
class_name="p-0",
)
]
)
]
return metadata, graph, True
def show_iterative_graph_data(
trigger: Trigger,
data: dict,
graph_layout: dict
) -> tuple:
"""Generates the data for the offcanvas displayed when a particular point in
a box graph (iterative data) is clicked on.
:param trigger: The information from trigger when the data point is clicked
on.
:param graph: The data from the clicked point in the graph.
:param graph_layout: The layout of the HDRH latency graph.
:type trigger: Trigger
:type graph: dict
:type graph_layout: dict
:returns: The data to be displayed on the offcanvas and the information to
show the offcanvas.
:rtype: tuple(list, list, bool)
"""
if trigger.idx == "tput":
idx = 0
elif trigger.idx == "bandwidth":
idx = 1
elif trigger.idx == "lat":
idx = len(data) - 1
else:
return list(), list(), False
try:
data = data[idx]["points"]
except (IndexError, KeyError, ValueError, TypeError):
return list(), list(), False
def _process_stats(data: list, param: str) -> list:
"""Process statistical data provided by plot.ly box graph.
:param data: Statistical data provided by plot.ly box graph.
:param param: Parameter saying if the data come from "tput" or
"lat" graph.
:type data: list
:type param: str
:returns: Listo of tuples where the first value is the
statistic's name and the secont one it's value.
:rtype: list
"""
if len(data) == 7:
stats = ("max", "upper fence", "q3", "median", "q1",
"lower fence", "min")
elif len(data) == 9:
stats = ("outlier", "max", "upper fence", "q3", "median",
"q1", "lower fence", "min", "outlier")
elif len(data) == 1:
if param == "lat":
stats = ("average latency at 50% PDR", )
elif param == "bandwidth":
stats = ("bandwidth", )
else:
stats = ("throughput", )
else:
return list()
unit = " [us]" if param == "lat" else str()
return [(f"{stat}{unit}", f"{value['y']:,.0f}")
for stat, value in zip(stats, data)]
customdata = data[0].get("customdata", dict())
datapoint = customdata.get("metadata", dict())
hdrh_data = customdata.get("hdrh", dict())
list_group_items = list()
for k, v in datapoint.items():
if k == "csit-ref":
if len(data) > 1:
continue
list_group_item = dbc.ListGroupItem([
dbc.Badge(k),
html.A(v, href=f"{C.URL_LOGS}{v}", target="_blank")
])
else:
list_group_item = dbc.ListGroupItem([dbc.Badge(k), v])
list_group_items.append(list_group_item)
graph = list()
if trigger.idx == "tput":
title = "Throughput"
elif trigger.idx == "bandwidth":
title = "Bandwidth"
elif trigger.idx == "lat":
title = "Latency"
if len(data) == 1:
if hdrh_data:
graph = [dbc.Card(
class_name="gy-2 p-0",
children=[
dbc.CardHeader(hdrh_data.pop("name")),
dbc.CardBody(dcc.Graph(
id="hdrh-latency-graph",
figure=graph_hdrh_latency(hdrh_data, graph_layout)
))
])
]
for k, v in _process_stats(data, trigger.idx):
list_group_items.append(dbc.ListGroupItem([dbc.Badge(k), v]))
metadata = [
dbc.Card(
class_name="gy-2 p-0",
children=[
dbc.CardHeader(children=[
dcc.Clipboard(
target_id="tput-lat-metadata",
title="Copy",
style={"display": "inline-block"}
),
title
]),
dbc.CardBody(
dbc.ListGroup(list_group_items, flush=True),
id="tput-lat-metadata",
class_name="p-0"
)
]
)
]
return metadata, graph, True
|