aboutsummaryrefslogtreecommitdiffstats
path: root/resources/libraries/python/ssh.py
blob: 4bcfe6591fa1718387324158465792a92f6582ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Copyright (c) 2018 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Library for SSH connection management."""

import StringIO
from time import time, sleep

import socket
import paramiko
from paramiko import RSAKey
from paramiko.ssh_exception import SSHException
from scp import SCPClient
from robot.api import logger

__all__ = ["exec_cmd", "exec_cmd_no_error"]

# TODO: load priv key


class SSHTimeout(Exception):
    """This exception is raised when a timeout occurs."""
    pass


class SSH(object):
    """Contains methods for managing and using SSH connections."""

    __MAX_RECV_BUF = 10*1024*1024
    __existing_connections = {}

    def __init__(self):
        self._ssh = None
        self._node = None

    @staticmethod
    def _node_hash(node):
        """Get IP address and port hash from node dictionary.

        :param node: Node in topology.
        :type node: dict
        :returns: IP address and port for the specified node.
        :rtype: int
        """

        return hash(frozenset([node['host'], node['port']]))

    def connect(self, node, attempts=5):
        """Connect to node prior to running exec_command or scp.

        If there already is a connection to the node, this method reuses it.

        :param node: Node in topology.
        :param attempts: Number of reconnect attempts.
        :type node: dict
        :type attempts: int
        :raises IOError: If cannot connect to host.
        """
        self._node = node
        node_hash = self._node_hash(node)
        if node_hash in SSH.__existing_connections:
            self._ssh = SSH.__existing_connections[node_hash]
            if self._ssh.get_transport().is_active():
                logger.debug('Reusing SSH: {ssh}'.format(ssh=self._ssh))
            else:
                if attempts > 0:
                    self._reconnect(attempts-1)
                else:
                    raise IOError('Cannot connect to {host}'.
                                  format(host=node['host']))
        else:
            try:
                start = time()
                pkey = None
                if 'priv_key' in node:
                    pkey = RSAKey.from_private_key(
                        StringIO.StringIO(node['priv_key']))

                self._ssh = paramiko.SSHClient()
                self._ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

                self._ssh.connect(node['host'], username=node['username'],
                                  password=node.get('password'), pkey=pkey,
                                  port=node['port'])

                self._ssh.get_transport().set_keepalive(10)

                SSH.__existing_connections[node_hash] = self._ssh
                logger.debug('New SSH to {peer} took {total} seconds: {ssh}'.
                             format(
                                 peer=self._ssh.get_transport().getpeername(),
                                 total=(time() - start),
                                 ssh=self._ssh))
            except SSHException:
                raise IOError('Cannot connect to {host}'.
                              format(host=node['host']))

    def disconnect(self, node):
        """Close SSH connection to the node.

        :param node: The node to disconnect from.
        :type node: dict
        """
        node_hash = self._node_hash(node)
        if node_hash in SSH.__existing_connections:
            logger.debug('Disconnecting peer: {host}, {port}'.
                         format(host=node['host'], port=node['port']))
            ssh = SSH.__existing_connections.pop(node_hash)
            ssh.close()

    def _reconnect(self, attempts=0):
        """Close the SSH connection and open it again.

        :param attempts: Number of reconnect attempts.
        :type attempts: int
        """
        node = self._node
        self.disconnect(node)
        self.connect(node, attempts)
        logger.debug('Reconnecting peer done: {host}, {port}'.
                     format(host=node['host'], port=node['port']))

    def exec_command(self, cmd, timeout=10):
        """Execute SSH command on a new channel on the connected Node.

        :param cmd: Command to run on the Node.
        :param timeout: Maximal time in seconds to wait until the command is
        done. If set to None then wait forever.
        :type cmd: str
        :type timeout: int
        :return return_code, stdout, stderr
        :rtype: tuple(int, str, str)
        :raise SSHTimeout: If command is not finished in timeout time.
        """
        stdout = StringIO.StringIO()
        stderr = StringIO.StringIO()
        try:
            chan = self._ssh.get_transport().open_session(timeout=5)
            peer = self._ssh.get_transport().getpeername()
        except AttributeError:
            self._reconnect()
            chan = self._ssh.get_transport().open_session(timeout=5)
            peer = self._ssh.get_transport().getpeername()
        except SSHException:
            self._reconnect()
            chan = self._ssh.get_transport().open_session(timeout=5)
            peer = self._ssh.get_transport().getpeername()
        chan.settimeout(timeout)

        logger.trace('exec_command on {peer} with timeout {timeout}: {cmd}'
                     .format(peer=peer, timeout=timeout, cmd=cmd))

        start = time()
        chan.exec_command(cmd)
        while not chan.exit_status_ready() and timeout is not None:
            if chan.recv_ready():
                stdout.write(chan.recv(self.__MAX_RECV_BUF))

            if chan.recv_stderr_ready():
                stderr.write(chan.recv_stderr(self.__MAX_RECV_BUF))

            if time() - start > timeout:
                raise SSHTimeout(
                    'Timeout exception during execution of command: {cmd}\n'
                    'Current contents of stdout buffer: {stdout}\n'
                    'Current contents of stderr buffer: {stderr}\n'
                    .format(cmd=cmd, stdout=stdout.getvalue(),
                            stderr=stderr.getvalue())
                )

            sleep(0.1)
        return_code = chan.recv_exit_status()

        while chan.recv_ready():
            stdout.write(chan.recv(self.__MAX_RECV_BUF))

        while chan.recv_stderr_ready():
            stderr.write(chan.recv_stderr(self.__MAX_RECV_BUF))

        end = time()
        logger.trace('exec_command on {peer} took {total} seconds'.
                     format(peer=peer, total=end-start))

        logger.trace('return RC {rc}'.format(rc=return_code))
        logger.trace('return STDOUT {stdout}'.format(stdout=stdout.getvalue()))
        logger.trace('return STDERR {stderr}'.format(stderr=stderr.getvalue()))
        return return_code, stdout.getvalue(), stderr.getvalue()

    def exec_command_sudo(self, cmd, cmd_input=None, timeout=30):
        """Execute SSH command with sudo on a new channel on the connected Node.

        :param cmd: Command to be executed.
        :param cmd_input: Input redirected to the command.
        :param timeout: Timeout.
        :returns: return_code, stdout, stderr

        :Example:

        >>> from ssh import SSH
        >>> ssh = SSH()
        >>> ssh.connect(node)
        >>> # Execute command without input (sudo -S cmd)
        >>> ssh.exec_command_sudo("ifconfig eth0 down")
        >>> # Execute command with input (sudo -S cmd <<< "input")
        >>> ssh.exec_command_sudo("vpp_api_test", "dump_interface_table")
        """
        if cmd_input is None:
            command = 'sudo -S {c}'.format(c=cmd)
        else:
            command = 'sudo -S {c} <<< "{i}"'.format(c=cmd, i=cmd_input)
        return self.exec_command(command, timeout)

    def exec_command_lxc(self, lxc_cmd, lxc_name, lxc_params='', sudo=True,
                         timeout=30):
        """Execute command in LXC on a new SSH channel on the connected Node.

        :param lxc_cmd: Command to be executed.
        :param lxc_name: LXC name.
        :param lxc_params: Additional parameters for LXC attach.
        :param sudo: Run in privileged LXC mode. Default: privileged
        :param timeout: Timeout.
        :type lxc_cmd: str
        :type lxc_name: str
        :type lxc_params: str
        :type sudo: bool
        :type timeout: int
        :returns: return_code, stdout, stderr
        """
        command = "lxc-attach {p} --name {n} -- /bin/sh -c '{c}'"\
            .format(p=lxc_params, n=lxc_name, c=lxc_cmd)

        if sudo:
            command = 'sudo -S {c}'.format(c=command)
        return self.exec_command(command, timeout)

    def interactive_terminal_open(self, time_out=45):
        """Open interactive terminal on a new channel on the connected Node.

        :param time_out: Timeout in seconds.
        :returns: SSH channel with opened terminal.

        .. warning:: Interruptingcow is used here, and it uses
           signal(SIGALRM) to let the operating system interrupt program
           execution. This has the following limitations: Python signal
           handlers only apply to the main thread, so you cannot use this
           from other threads. You must not use this in a program that
           uses SIGALRM itself (this includes certain profilers)
        """
        chan = self._ssh.get_transport().open_session()
        chan.get_pty()
        chan.invoke_shell()
        chan.settimeout(int(time_out))
        chan.set_combine_stderr(True)

        buf = ''
        while not buf.endswith((":~# ", ":~$ ", "~]$ ", "~]# ")):
            try:
                chunk = chan.recv(self.__MAX_RECV_BUF)
                if not chunk:
                    break
                buf += chunk
                if chan.exit_status_ready():
                    logger.error('Channel exit status ready')
                    break
            except socket.timeout:
                logger.error('Socket timeout: {0}'.format(buf))
                raise Exception('Socket timeout: {0}'.format(buf))
        return chan

    def interactive_terminal_exec_command(self, chan, cmd, prompt):
        """Execute command on interactive terminal.

        interactive_terminal_open() method has to be called first!

        :param chan: SSH channel with opened terminal.
        :param cmd: Command to be executed.
        :param prompt: Command prompt, sequence of characters used to
        indicate readiness to accept commands.
        :returns: Command output.

        .. warning:: Interruptingcow is used here, and it uses
           signal(SIGALRM) to let the operating system interrupt program
           execution. This has the following limitations: Python signal
           handlers only apply to the main thread, so you cannot use this
           from other threads. You must not use this in a program that
           uses SIGALRM itself (this includes certain profilers)
        """
        chan.sendall('{c}\n'.format(c=cmd))
        buf = ''
        while not buf.endswith(prompt):
            try:
                chunk = chan.recv(self.__MAX_RECV_BUF)
                if not chunk:
                    break
                buf += chunk
                if chan.exit_status_ready():
                    logger.error('Channel exit status ready')
                    break
            except socket.timeout:
                logger.error('Socket timeout during execution of command: '
                             '{0}\nBuffer content:\n{1}'.format(cmd, buf))
                raise Exception('Socket timeout during execution of command: '
                                '{0}\nBuffer content:\n{1}'.format(cmd, buf))
        tmp = buf.replace(cmd.replace('\n', ''), '')
        for item in prompt:
            tmp.replace(item, '')
        return tmp

    @staticmethod
    def interactive_terminal_close(chan):
        """Close interactive terminal SSH channel.

        :param: chan: SSH channel to be closed.
        """
        chan.close()

    def scp(self, local_path, remote_path, get=False, timeout=30):
        """Copy files from local_path to remote_path or vice versa.

        connect() method has to be called first!

        :param local_path: Path to local file that should be uploaded; or
        path where to save remote file.
        :param remote_path: Remote path where to place uploaded file; or
        path to remote file which should be downloaded.
        :param get: scp operation to perform. Default is put.
        :param timeout: Timeout value in seconds.
        :type local_path: str
        :type remote_path: str
        :type get: bool
        :type timeout: int
        """
        if not get:
            logger.trace('SCP {0} to {1}:{2}'.format(
                local_path, self._ssh.get_transport().getpeername(),
                remote_path))
        else:
            logger.trace('SCP {0}:{1} to {2}'.format(
                self._ssh.get_transport().getpeername(), remote_path,
                local_path))
        # SCPCLient takes a paramiko transport as its only argument
        scp = SCPClient(self._ssh.get_transport(), socket_timeout=timeout)
        start = time()
        if not get:
            scp.put(local_path, remote_path)
        else:
            scp.get(remote_path, local_path)
        scp.close()
        end = time()
        logger.trace('SCP took {0} seconds'.format(end-start))


def exec_cmd(node, cmd, timeout=600, sudo=False):
    """Convenience function to ssh/exec/return rc, out & err.

    Returns (rc, stdout, stderr).
    """
    if node is None:
        raise TypeError('Node parameter is None')
    if cmd is None:
        raise TypeError('Command parameter is None')
    if not cmd:
        raise ValueError('Empty command parameter')

    ssh = SSH()
    try:
        ssh.connect(node)
    except SSHException as err:
        logger.error("Failed to connect to node" + str(err))
        return None, None, None

    try:
        if not sudo:
            (ret_code, stdout, stderr) = ssh.exec_command(cmd, timeout=timeout)
        else:
            (ret_code, stdout, stderr) = ssh.exec_command_sudo(cmd,
                                                               timeout=timeout)
    except SSHException as err:
        logger.error(err)
        return None, None, None

    return ret_code, stdout, stderr


def exec_cmd_no_error(node, cmd, timeout=600, sudo=False, message=None):
    """Convenience function to ssh/exec/return out & err.

    Verifies that return code is zero.

    :param node: DUT node.
    :param cmd: Command to be executed.
    :param timeout: Timeout value in seconds. Default: 600.
    :param sudo: Sudo privilege execution flag. Default: False.
    :param message: Error message in case of failure. Default: None.
    :type node: dict
    :type cmd: str
    :type timeout: int
    :type sudo: bool
    :type message: str
    :returns: Stdout, Stderr.
    :rtype: tuple(str, str)
    :raise RuntimeError: If bash return code is not 0.
    """
    ret_code, stdout, stderr = exec_cmd(node, cmd, timeout=timeout, sudo=sudo)
    msg = ('Command execution failed: "{cmd}"\n{stderr}'.
           format(cmd=cmd, stderr=stderr) if message is None else message)
    if ret_code != 0:
        raise RuntimeError(msg)

    return stdout, stderr
">sip) self.assertEqual(arp.pdst, dip) def verify_arp_resp(self, rx, smac, dmac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["is-at"]) self.assertEqual(arp.hwsrc, smac) self.assertEqual(arp.hwdst, dmac) self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def verify_arp_vrrp_resp(self, rx, smac, dmac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["is-at"]) self.assertNotEqual(arp.hwsrc, smac) self.assertTrue("00:00:5e:00:01" in arp.hwsrc or "00:00:5E:00:01" in arp.hwsrc) self.assertEqual(arp.hwdst, dmac) self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def verify_ip(self, rx, smac, dmac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) ip = rx[IP] self.assertEqual(ip.src, sip) self.assertEqual(ip.dst, dip) def verify_ip_o_mpls(self, rx, smac, dmac, label, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) mpls = rx[MPLS] self.assertTrue(mpls.label, label) ip = rx[IP] self.assertEqual(ip.src, sip) self.assertEqual(ip.dst, dip) def test_arp(self): """ ARP """ # # Generate some hosts on the LAN # self.pg1.generate_remote_hosts(11) # # watch for: # - all neighbour events # - all neighbor events on pg1 # - neighbor events for host[1] on pg1 # self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid()) self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index) self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index, ip=self.pg1.remote_hosts[1].ip4) self.logger.info(self.vapi.cli("sh ip neighbor-watcher")) # # Send IP traffic to one of these unresolved hosts. # expect the generation of an ARP request # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_req(rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4) # # And a dynamic ARP entry for host 1 # dyn_arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) dyn_arp.add_vpp_config() self.assertTrue(dyn_arp.query_vpp_config()) # this matches all of the listnerers es = [self.vapi.wait_for_event(1, "ip_neighbor_event") for i in range(3)] for e in es: self.assertEqual(str(e.neighbor.ip_address), self.pg1.remote_hosts[1].ip4) # # now we expect IP traffic forwarded # dyn_p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(dyn_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_ip(rx[0], self.pg1.local_mac, self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[1].ip4) # # And a Static ARP entry for host 2 # static_arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].mac, self.pg1.remote_hosts[2].ip4, is_static=1) static_arp.add_vpp_config() es = [self.vapi.wait_for_event(1, "ip_neighbor_event") for i in range(2)] for e in es: self.assertEqual(str(e.neighbor.ip_address), self.pg1.remote_hosts[2].ip4) static_p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[2].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(static_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_ip(rx[0], self.pg1.local_mac, self.pg1.remote_hosts[2].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[2].ip4) # # remove all the listeners # self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid()) self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index) self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index, ip=self.pg1.remote_hosts[1].ip4) # # flap the link. dynamic ARPs get flush, statics don't # self.pg1.admin_down() self.pg1.admin_up() self.pg0.add_stream(static_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_ip(rx[0], self.pg1.local_mac, self.pg1.remote_hosts[2].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[2].ip4) self.pg0.add_stream(dyn_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_req(rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4) self.assertFalse(dyn_arp.query_vpp_config()) self.assertTrue(static_arp.query_vpp_config()) # # Send an ARP request from one of the so-far unlearned remote hosts # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1._remote_hosts[3].mac) / ARP(op="who-has", hwsrc=self.pg1._remote_hosts[3].mac, pdst=self.pg1.local_ip4, psrc=self.pg1._remote_hosts[3].ip4)) self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1._remote_hosts[3].mac, self.pg1.local_ip4, self.pg1._remote_hosts[3].ip4) # # VPP should have learned the mapping for the remote host # self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1._remote_hosts[3].ip4)) # # Fire in an ARP request before the interface becomes IP enabled # self.pg2.generate_remote_hosts(4) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg2.remote_hosts[3].ip4)) pt = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / Dot1Q(vlan=0) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg2.remote_hosts[3].ip4)) self.send_and_assert_no_replies(self.pg2, p, "interface not IP enabled") # # Make pg2 un-numbered to pg1 # self.pg2.set_unnumbered(self.pg1.sw_if_index) # # test the unnumbered dump both by all interfaces and just the enabled # one # unnum = self.vapi.ip_unnumbered_dump() self.assertTrue(len(unnum)) self.assertEqual(unnum[0].ip_sw_if_index, self.pg1.sw_if_index) self.assertEqual(unnum[0].sw_if_index, self.pg2.sw_if_index) unnum = self.vapi.ip_unnumbered_dump(self.pg2.sw_if_index) self.assertTrue(len(unnum)) self.assertEqual(unnum[0].ip_sw_if_index, self.pg1.sw_if_index) self.assertEqual(unnum[0].sw_if_index, self.pg2.sw_if_index) # # We should respond to ARP requests for the unnumbered to address # once an attached route to the source is known # self.send_and_assert_no_replies( self.pg2, p, "ARP req for unnumbered address - no source") attached_host = VppIpRoute(self, self.pg2.remote_hosts[3].ip4, 32, [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)]) attached_host.add_vpp_config() self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg2.remote_hosts[3].ip4) self.pg2.add_stream(pt) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg2.remote_hosts[3].ip4) # # A neighbor entry that has no associated FIB-entry # arp_no_fib = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[4].mac, self.pg1.remote_hosts[4].ip4, is_no_fib_entry=1) arp_no_fib.add_vpp_config() # # check we have the neighbor, but no route # self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1._remote_hosts[4].ip4)) self.assertFalse(find_route(self, self.pg1._remote_hosts[4].ip4, 32)) # # pg2 is unnumbered to pg1, so we can form adjacencies out of pg2 # from within pg1's subnet # arp_unnum = VppNeighbor(self, self.pg2.sw_if_index, self.pg1.remote_hosts[5].mac, self.pg1.remote_hosts[5].ip4) arp_unnum.add_vpp_config() p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[5].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_ip(rx[0], self.pg2.local_mac, self.pg1.remote_hosts[5].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[5].ip4) # # ARP requests from hosts in pg1's subnet sent on pg2 are replied to # with the unnumbered interface's address as the source # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[6].ip4)) self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[6].ip4) # # An attached host route out of pg2 for an undiscovered hosts generates # an ARP request with the unnumbered address as the source # att_unnum = VppIpRoute(self, self.pg1.remote_hosts[7].ip4, 32, [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)]) att_unnum.add_vpp_config() p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[7].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_req(rx[0], self.pg2.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[7].ip4) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[7].ip4)) self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[7].ip4) # # An attached host route as yet unresolved out of pg2 for an # undiscovered host, an ARP requests begets a response. # att_unnum1 = VppIpRoute(self, self.pg1.remote_hosts[8].ip4, 32, [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)]) att_unnum1.add_vpp_config() p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[8].ip4)) self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[8].ip4) # # Send an ARP request from one of the so-far unlearned remote hosts # with a VLAN0 tag # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1._remote_hosts[9].mac) / Dot1Q(vlan=0) / ARP(op="who-has", hwsrc=self.pg1._remote_hosts[9].mac, pdst=self.pg1.local_ip4, psrc=self.pg1._remote_hosts[9].ip4)) self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1._remote_hosts[9].mac, self.pg1.local_ip4, self.pg1._remote_hosts[9].ip4) # # Add a hierarchy of routes for a host in the sub-net. # Should still get an ARP resp since the cover is attached # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_mac) / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[10].ip4)) r1 = VppIpRoute(self, self.pg1.remote_hosts[10].ip4, 30, [VppRoutePath(self.pg1.remote_hosts[10].ip4, self.pg1.sw_if_index)]) r1.add_vpp_config() self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[10].ip4) r2 = VppIpRoute(self, self.pg1.remote_hosts[10].ip4, 32, [VppRoutePath(self.pg1.remote_hosts[10].ip4, self.pg1.sw_if_index)]) r2.add_vpp_config() self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[10].ip4) # # add an ARP entry that's not on the sub-net and so whose # adj-fib fails the refinement check. then send an ARP request # from that source # a1 = VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_mac, "100.100.100.50") a1.add_vpp_config() p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc="100.100.100.50", pdst=self.pg0.remote_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for from failed adj-fib") # # ERROR Cases # 1 - don't respond to ARP request for address not within the # interface's sub-net # 1b - nor within the unnumbered subnet # 1c - nor within the subnet of a different interface # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst="10.10.10.3", psrc=self.pg0.remote_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local destination") self.assertFalse(find_nbr(self, self.pg0.sw_if_index, "10.10.10.3")) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst="10.10.10.3", psrc=self.pg1.remote_hosts[7].ip4)) self.send_and_assert_no_replies( self.pg0, p, "ARP req for non-local destination - unnum") p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req diff sub-net") self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg1.remote_ip4)) # # 2 - don't respond to ARP request from an address not within the # interface's sub-net # 2b - to a proxied address # 2c - not within a different interface's sub-net p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc="10.10.10.3", pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source") p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, psrc="10.10.10.3", pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies( self.pg0, p, "ARP req for non-local source - unnum") p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc=self.pg1.remote_ip4, pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source 2c") # # 3 - don't respond to ARP request from an address that belongs to # the router # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc=self.pg0.local_ip4, pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source") # # 4 - don't respond to ARP requests that has mac source different # from ARP request HW source # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc="00:00:00:DE:AD:BE", psrc=self.pg0.remote_ip4, pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source") # # 5 - don't respond to ARP requests for address within the # interface's sub-net but not the interface's address # self.pg0.generate_remote_hosts(2) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc=self.pg0.remote_hosts[0].ip4, pdst=self.pg0.remote_hosts[1].ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local destination") # # cleanup # static_arp.remove_vpp_config() self.pg2.unset_unnumbered(self.pg1.sw_if_index) # need this to flush the adj-fibs self.pg2.unset_unnumbered(self.pg1.sw_if_index) self.pg2.admin_down() self.pg1.admin_down() def test_proxy_mirror_arp(self): """ Interface Mirror Proxy ARP """ # # When VPP has an interface whose address is also applied to a TAP # interface on the host, then VPP's TAP interface will be unnumbered # to the 'real' interface and do proxy ARP from the host. # the curious aspect of this setup is that ARP requests from the host # will come from the VPP's own address. # self.pg0.generate_remote_hosts(2) arp_req_from_me = (Ether(src=self.pg2.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg0.remote_hosts[1].ip4, psrc=self.pg0.local_ip4)) # # Configure Proxy ARP for the subnet on PG0addresses on pg0 # self.vapi.proxy_arp_add_del(self.pg0._local_ip4_subnet, self.pg0._local_ip4_bcast) # Make pg2 un-numbered to pg0 # self.pg2.set_unnumbered(self.pg0.sw_if_index) # # Enable pg2 for proxy ARP # self.pg2.set_proxy_arp() # # Send the ARP request with an originating address that # is VPP's own address # self.pg2.add_stream(arp_req_from_me) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg0.remote_hosts[1].ip4, self.pg0.local_ip4) # # validate we have not learned an ARP entry as a result of this # self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg0.local_ip4)) # # cleanup # self.pg2.set_proxy_arp(0) self.vapi.proxy_arp_add_del(self.pg0._local_ip4_subnet, self.pg0._local_ip4_bcast, is_add=0) def test_proxy_arp(self): """ Proxy ARP """ self.pg1.generate_remote_hosts(2) # # Proxy ARP request packets for each interface # arp_req_pg0 = (Ether(src=self.pg0.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst="10.10.10.3", psrc=self.pg0.remote_ip4)) arp_req_pg0_tagged = (Ether(src=self.pg0.remote_mac, dst="ff:ff:ff:ff:ff:ff") / Dot1Q(vlan=0) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst="10.10.10.3", psrc=self.pg0.remote_ip4)) arp_req_pg1 = (Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst="10.10.10.3", psrc=self.pg1.remote_ip4)) arp_req_pg2 = (Ether(src=self.pg2.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst="10.10.10.3", psrc=self.pg1.remote_hosts[1].ip4)) arp_req_pg3 = (Ether(src=self.pg3.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg3.remote_mac, pdst="10.10.10.3", psrc=self.pg3.remote_ip4)) # # Configure Proxy ARP for 10.10.10.0 -> 10.10.10.124 # self.vapi.proxy_arp_add_del(inet_pton(AF_INET, "10.10.10.2"), inet_pton(AF_INET, "10.10.10.124")) # # No responses are sent when the interfaces are not enabled for proxy # ARP # self.send_and_assert_no_replies(self.pg0, arp_req_pg0, "ARP req from unconfigured interface") self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from unconfigured interface") # # Make pg2 un-numbered to pg1 # still won't reply. # self.pg2.set_unnumbered(self.pg1.sw_if_index) self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from unnumbered interface") # # Enable each interface to reply to proxy ARPs # for i in self.pg_interfaces: i.set_proxy_arp() # # Now each of the interfaces should reply to a request to a proxied # address # self.pg0.add_stream(arp_req_pg0) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0.get_capture(1) self.verify_arp_resp(rx[0], self.pg0.local_mac, self.pg0.remote_mac, "10.10.10.3", self.pg0.remote_ip4) self.pg0.add_stream(arp_req_pg0_tagged) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0.get_capture(1) self.verify_arp_resp(rx[0], self.pg0.local_mac, self.pg0.remote_mac, "10.10.10.3", self.pg0.remote_ip4) self.pg1.add_stream(arp_req_pg1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1.remote_mac, "10.10.10.3", self.pg1.remote_ip4) self.pg2.add_stream(arp_req_pg2) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, "10.10.10.3", self.pg1.remote_hosts[1].ip4) # # A request for an address out of the configured range # arp_req_pg1_hi = (Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst="10.10.10.125", psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg1, arp_req_pg1_hi, "ARP req out of range HI") arp_req_pg1_low = (Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst="10.10.10.1", psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg1, arp_req_pg1_low, "ARP req out of range Low") # # Request for an address in the proxy range but from an interface # in a different VRF # self.send_and_assert_no_replies(self.pg3, arp_req_pg3, "ARP req from different VRF") # # Disable Each interface for proxy ARP # - expect none to respond # for i in self.pg_interfaces: i.set_proxy_arp(0) self.send_and_assert_no_replies(self.pg0, arp_req_pg0, "ARP req from disable") self.send_and_assert_no_replies(self.pg1, arp_req_pg1, "ARP req from disable") self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from disable") # # clean up on interface 2 # self.pg2.unset_unnumbered(self.pg1.sw_if_index) def test_mpls(self): """ MPLS """ # # Interface 2 does not yet have ip4 config # self.pg2.config_ip4() self.pg2.generate_remote_hosts(2) # # Add a route with out going label via an ARP unresolved next-hop # ip_10_0_0_1 = VppIpRoute(self, "10.0.0.1", 32, [VppRoutePath(self.pg2.remote_hosts[1].ip4, self.pg2.sw_if_index, labels=[55])]) ip_10_0_0_1.add_vpp_config() # # packets should generate an ARP request # p = (Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac) / IP(src=self.pg0.remote_ip4, dst="10.0.0.1") / UDP(sport=1234, dport=1234) / Raw(b'\xa5' * 100)) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_req(rx[0], self.pg2.local_mac, self.pg2.local_ip4, self.pg2._remote_hosts[1].ip4) # # now resolve the neighbours # self.pg2.configure_ipv4_neighbors() # # Now packet should be properly MPLS encapped. # This verifies that MPLS link-type adjacencies are completed # when the ARP entry resolves # self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_ip_o_mpls(rx[0], self.pg2.local_mac, self.pg2.remote_hosts[1].mac, 55, self.pg0.remote_ip4, "10.0.0.1") self.pg2.unconfig_ip4() def test_arp_vrrp(self): """ ARP reply with VRRP virtual src hw addr """ # # IP packet destined for pg1 remote host arrives on pg0 resulting # in an ARP request for the address of the remote host on pg1 # p0 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_ip4) / UDP(sport=1234, dport=1234) / Raw()) rx1 = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_arp_req(rx1[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_ip4) # # ARP reply for address of pg1 remote host arrives on pg1 with # the hw src addr set to a value in the VRRP IPv4 range of # MAC addresses # p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc="00:00:5e:00:01:09", pdst=self.pg1.local_ip4, psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg1, p1, "ARP reply") # # IP packet destined for pg1 remote host arrives on pg0 again. # VPP should have an ARP entry for that address now and the packet # should be sent out pg1. # rx1 = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_ip(rx1[0], self.pg1.local_mac, "00:00:5e:00:01:09", self.pg0.remote_ip4, self.pg1.remote_ip4) self.pg1.admin_down() self.pg1.admin_up() def test_arp_duplicates(self): """ ARP Duplicates""" # # Generate some hosts on the LAN # self.pg1.generate_remote_hosts(3) # # Add host 1 on pg1 and pg2 # arp_pg1 = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) arp_pg1.add_vpp_config() arp_pg2 = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_mac, self.pg1.remote_hosts[1].ip4) arp_pg2.add_vpp_config() # # IP packet destined for pg1 remote host arrives on pg1 again. # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx1 = self.pg1.get_capture(1) self.verify_ip(rx1[0], self.pg1.local_mac, self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1.remote_hosts[1].ip4) # # remove the duplicate on pg1 # packet stream should generate ARPs out of pg1 # arp_pg1.remove_vpp_config() self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx1 = self.pg1.get_capture(1) self.verify_arp_req(rx1[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_hosts[1].ip4) # # Add it back # arp_pg1.add_vpp_config() self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx1 = self.pg1.get_capture(1) self.verify_ip(rx1[0], self.pg1.local_mac, self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1.remote_hosts[1].ip4) def test_arp_static(self): """ ARP Static""" self.pg2.generate_remote_hosts(3) # # Add a static ARP entry # static_arp = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_hosts[1].mac, self.pg2.remote_hosts[1].ip4, is_static=1) static_arp.add_vpp_config() # # Add the connected prefix to the interface # self.pg2.config_ip4() # # We should now find the adj-fib # self.assertTrue(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[1].ip4, is_static=1)) self.assertTrue(find_route(self, self.pg2.remote_hosts[1].ip4, 32)) # # remove the connected # self.pg2.unconfig_ip4() # # put the interface into table 1 # self.pg2.set_table_ip4(1) # # configure the same connected and expect to find the # adj fib in the new table # self.pg2.config_ip4() self.assertTrue(find_route(self, self.pg2.remote_hosts[1].ip4, 32, table_id=1)) # # clean-up # self.pg2.unconfig_ip4() static_arp.remove_vpp_config() self.pg2.set_table_ip4(0) def test_arp_incomplete(self): """ ARP Incomplete""" self.pg1.generate_remote_hosts(3) p0 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) p1 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[2].ip4) / UDP(sport=1234, dport=1234) / Raw()) # # a packet to an unresolved destination generates an ARP request # rx = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_arp_req(rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4) # # add a neighbour for remote host 1 # static_arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4, is_static=1) static_arp.add_vpp_config() # # change the interface's MAC # mac = [scapy.compat.chb(0x00), scapy.compat.chb(0x00), scapy.compat.chb(0x00), scapy.compat.chb(0x33), scapy.compat.chb(0x33), scapy.compat.chb(0x33)] mac_string = ''.join(mac) self.vapi.sw_interface_set_mac_address(self.pg1.sw_if_index, mac_string) # # now ARP requests come from the new source mac # rx = self.send_and_expect(self.pg0, [p1], self.pg1) self.verify_arp_req(rx[0], "00:00:00:33:33:33", self.pg1.local_ip4, self.pg1._remote_hosts[2].ip4) # # packets to the resolved host also have the new source mac # rx = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_ip(rx[0], "00:00:00:33:33:33", self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1.remote_hosts[1].ip4) # # set the mac address on the interface that does not have a # configured subnet and thus no glean # self.vapi.sw_interface_set_mac_address(self.pg2.sw_if_index, mac_string) def test_garp(self): """ GARP """ # # Generate some hosts on the LAN # self.pg1.generate_remote_hosts(4) # # And an ARP entry # arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) arp.add_vpp_config() self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].ip4, mac=self.pg1.remote_hosts[1].mac)) # # Send a GARP (request) to swap the host 1's address to that of host 2 # p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[2].mac) / ARP(op="who-has", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[2].mac, pdst=self.pg1.remote_hosts[1].ip4, psrc=self.pg1.remote_hosts[1].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].ip4, mac=self.pg1.remote_hosts[2].mac)) # # Send a GARP (reply) to swap the host 1's address to that of host 3 # p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[3].mac, pdst=self.pg1.remote_hosts[1].ip4, psrc=self.pg1.remote_hosts[1].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].ip4, mac=self.pg1.remote_hosts[3].mac)) # # GARPs (request nor replies) for host we don't know yet # don't result in new neighbour entries # p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(op="who-has", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[3].mac, pdst=self.pg1.remote_hosts[2].ip4, psrc=self.pg1.remote_hosts[2].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].ip4)) p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[3].mac, pdst=self.pg1.remote_hosts[2].ip4, psrc=self.pg1.remote_hosts[2].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].ip4)) def test_arp_incomplete(self): """ Incomplete Entries """ # # ensure that we throttle the ARP and ND requests # self.pg0.generate_remote_hosts(2) # # IPv4/ARP # ip_10_0_0_1 = VppIpRoute(self, "10.0.0.1", 32, [VppRoutePath(self.pg0.remote_hosts[1].ip4, self.pg0.sw_if_index)]) ip_10_0_0_1.add_vpp_config() p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IP(src=self.pg1.remote_ip4, dst="10.0.0.1") / UDP(sport=1234, dport=1234) / Raw()) self.pg1.add_stream(p1 * 257) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0._get_capture(1) # # how many we get is going to be dependent on the time for packet # processing but it should be small # self.assertLess(len(rx), 64) # # IPv6/ND # ip_10_1 = VppIpRoute(self, "10::1", 128, [VppRoutePath(self.pg0.remote_hosts[1].ip6, self.pg0.sw_if_index, proto=DpoProto.DPO_PROTO_IP6)]) ip_10_1.add_vpp_config() p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst="10::1") / UDP(sport=1234, dport=1234) / Raw()) self.pg1.add_stream(p1 * 257) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0._get_capture(1) # # how many we get is going to be dependent on the time for packet # processing but it should be small # self.assertLess(len(rx), 64) def test_arp_forus(self): """ ARP for for-us """ # # Test that VPP responds with ARP requests to addresses that # are connected and local routes. # Use one of the 'remote' addresses in the subnet as a local address # The intention of this route is that it then acts like a secondary # address added to an interface # self.pg0.generate_remote_hosts(2) forus = VppIpRoute( self, self.pg0.remote_hosts[1].ip4, 32, [VppRoutePath("0.0.0.0", self.pg0.sw_if_index, type=FibPathType.FIB_PATH_TYPE_LOCAL)]) forus.add_vpp_config() p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwdst=self.pg0.local_mac, hwsrc=self.pg0.remote_mac, pdst=self.pg0.remote_hosts[1].ip4, psrc=self.pg0.remote_ip4)) rx = self.send_and_expect(self.pg0, [p], self.pg0) self.verify_arp_resp(rx[0], self.pg0.local_mac, self.pg0.remote_mac, self.pg0.remote_hosts[1].ip4, self.pg0.remote_ip4) def test_arp_table_swap(self): # # Generate some hosts on the LAN # N_NBRS = 4 self.pg1.generate_remote_hosts(N_NBRS) for n in range(N_NBRS): # a route thru each neighbour VppIpRoute(self, "10.0.0.%d" % n, 32, [VppRoutePath(self.pg1.remote_hosts[n].ip4, self.pg1.sw_if_index)]).add_vpp_config() # resolve each neighbour p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc="00:00:5e:00:01:09", pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[n].ip4)) self.send_and_assert_no_replies(self.pg1, p1, "ARP reply") self.logger.info(self.vapi.cli("sh ip neighbors")) # # swap the table pg1 is in # table = VppIpTable(self, 100).add_vpp_config() self.pg1.unconfig_ip4() self.pg1.set_table_ip4(100) self.pg1.config_ip4() # # all neighbours are cleared # for n in range(N_NBRS): self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip4)) # # packets to all neighbours generate ARP requests # for n in range(N_NBRS): # a route thru each neighbour VppIpRoute(self, "10.0.0.%d" % n, 32, [VppRoutePath(self.pg1.remote_hosts[n].ip4, self.pg1.sw_if_index)], table_id=100).add_vpp_config() p = (Ether(src=self.pg1.remote_hosts[n].mac, dst=self.pg1.local_mac) / IP(src=self.pg1.remote_hosts[n].ip4, dst="10.0.0.%d" % n) / Raw(b'0x5' * 100)) rxs = self.send_and_expect(self.pg1, [p], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_hosts[n].ip4) self.pg1.unconfig_ip4() self.pg1.set_table_ip4(0) class NeighborStatsTestCase(VppTestCase): """ ARP/ND Counters """ @classmethod def setUpClass(cls): super(NeighborStatsTestCase, cls).setUpClass() @classmethod def tearDownClass(cls): super(NeighborStatsTestCase, cls).tearDownClass() def setUp(self): super(NeighborStatsTestCase, self).setUp() self.create_pg_interfaces(range(2)) # pg0 configured with ip4 and 6 addresses used for input # pg1 configured with ip4 and 6 addresses used for output # pg2 is unnumbered to pg0 for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.config_ip6() i.resolve_arp() i.resolve_ndp() def tearDown(self): super(NeighborStatsTestCase, self).tearDown() for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() def test_arp_stats(self): """ ARP Counters """ self.vapi.cli("adj counters enable") self.pg1.generate_remote_hosts(2) arp1 = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[0].mac, self.pg1.remote_hosts[0].ip4) arp1.add_vpp_config() arp2 = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) arp2.add_vpp_config() p1 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[0].ip4) / UDP(sport=1234, dport=1234) / Raw()) p2 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) rx = self.send_and_expect(self.pg0, p1 * NUM_PKTS, self.pg1) rx = self.send_and_expect(self.pg0, p2 * NUM_PKTS, self.pg1) self.assertEqual(NUM_PKTS, arp1.get_stats()['packets']) self.assertEqual(NUM_PKTS, arp2.get_stats()['packets']) rx = self.send_and_expect(self.pg0, p1 * NUM_PKTS, self.pg1) self.assertEqual(NUM_PKTS*2, arp1.get_stats()['packets']) def test_nd_stats(self): """ ND Counters """ self.vapi.cli("adj counters enable") self.pg0.generate_remote_hosts(3) nd1 = VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[1].mac, self.pg0.remote_hosts[1].ip6) nd1.add_vpp_config() nd2 = VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[2].mac, self.pg0.remote_hosts[2].ip6) nd2.add_vpp_config() p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst=self.pg0.remote_hosts[1].ip6) / UDP(sport=1234, dport=1234) / Raw()) p2 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst=self.pg0.remote_hosts[2].ip6) / UDP(sport=1234, dport=1234) / Raw()) rx = self.send_and_expect(self.pg1, p1 * 16, self.pg0) rx = self.send_and_expect(self.pg1, p2 * 16, self.pg0) self.assertEqual(16, nd1.get_stats()['packets']) self.assertEqual(16, nd2.get_stats()['packets']) rx = self.send_and_expect(self.pg1, p1 * NUM_PKTS, self.pg0) self.assertEqual(NUM_PKTS+16, nd1.get_stats()['packets']) class NeighborAgeTestCase(VppTestCase): """ ARP/ND Aging """ @classmethod def setUpClass(cls): super(NeighborAgeTestCase, cls).setUpClass() @classmethod def tearDownClass(cls): super(NeighborAgeTestCase, cls).tearDownClass() def setUp(self): super(NeighborAgeTestCase, self).setUp() self.create_pg_interfaces(range(1)) # pg0 configured with ip4 and 6 addresses used for input # pg1 configured with ip4 and 6 addresses used for output # pg2 is unnumbered to pg0 for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.config_ip6() i.resolve_arp() i.resolve_ndp() def tearDown(self): super(NeighborAgeTestCase, self).tearDown() for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() def wait_for_no_nbr(self, intf, address, n_tries=50, s_time=1): while (n_tries): if not find_nbr(self, intf, address): return True n_tries = n_tries - 1 self.sleep(s_time) return False def verify_arp_req(self, rx, smac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, "ff:ff:ff:ff:ff:ff") self.assertEqual(ether.src, smac) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["who-has"]) self.assertEqual(arp.hwsrc, smac) self.assertEqual(arp.hwdst, "00:00:00:00:00:00") self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def test_age(self): """ Aging/Recycle """ self.vapi.cli("set logging unthrottle 0") self.vapi.cli("set logging size %d" % 0xffff) self.pg0.generate_remote_hosts(201) vaf = VppEnum.vl_api_address_family_t # # start listening on all interfaces # self.pg_enable_capture(self.pg_interfaces) # # Set the neighbor configuration: # limi = 200 # age = 0 seconds # recycle = false # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=False) self.vapi.cli("sh ip neighbor-config") # add the 198 neighbours that should pass (-1 for one created in setup) for ii in range(200): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[ii].mac, self.pg0.remote_hosts[ii].ip4).add_vpp_config() # one more neighbor over the limit should fail with self.vapi.assert_negative_api_retval(): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].mac, self.pg0.remote_hosts[200].ip4).add_vpp_config() # # change the config to allow recycling the old neighbors # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=True) # now new additions are allowed VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].mac, self.pg0.remote_hosts[200].ip4).add_vpp_config() # add the first neighbor we configured has been re-used self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[0].ip4)) self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].ip4)) # # change the config to age old neighbors # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=2, recycle=True) self.vapi.cli("sh ip4 neighbor-sorted") # # expect probes from all these ARP entries as they age # 3 probes for each neighbor 3*200 = 600 rxs = self.pg0.get_capture(600, timeout=8) for ii in range(3): for jj in range(200): rx = rxs[ii*200 + jj] # rx.show() # # 3 probes sent then 1 more second to see if a reply comes, before # they age out # for jj in range(1, 201): self.wait_for_no_nbr(self.pg0.sw_if_index, self.pg0.remote_hosts[jj].ip4) self.assertFalse(self.vapi.ip_neighbor_dump(sw_if_index=0xffffffff, af=vaf.ADDRESS_IP4)) # # load up some neighbours again with 2s aging enabled # they should be removed after 10s (2s age + 4s for probes + gap) # for ii in range(10): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[ii].mac, self.pg0.remote_hosts[ii].ip4).add_vpp_config() self.sleep(10) self.assertFalse(self.vapi.ip_neighbor_dump(sw_if_index=0xffffffff, af=vaf.ADDRESS_IP4)) # # check if we can set age and recycle with empty neighbor list # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=1000, recycle=True) # # load up some neighbours again, then disable the aging # they should still be there in 10 seconds time # for ii in range(10): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[ii].mac, self.pg0.remote_hosts[ii].ip4).add_vpp_config() self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=False) self.sleep(10) self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[0].ip4)) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner)