aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/stats/graphs.py
blob: 42f23da5aa1054e04681f37476790b327573e462 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
"""

import plotly.graph_objects as go
import pandas as pd

from datetime import datetime, timedelta

def select_data(data: pd.DataFrame, itm:str, start: datetime,
        end: datetime) -> pd.DataFrame:
    """Select the data for graphs from the provided data frame.

    :param data: Data frame with data for graphs.
    :param itm: Item (in this case job name) which data will be selected from
        the input data frame.
    :param start: The date (and time) when the selected data starts.
    :param end: The date (and time) when the selected data ends.
    :type data: pandas.DataFrame
    :type itm: str
    :type start: datetime.datetime
    :type end: datetime.datetime
    :returns: A data frame with selected data.
    :rtype: pandas.DataFrame
    """

    df = data.loc[
        (data["job"] == itm) &
        (data["start_time"] >= start) & (data["start_time"] <= end)
    ].sort_values(by="start_time", ignore_index=True)
    df = df.dropna(subset=["duration", ])

    return df


def graph_statistics(df: pd.DataFrame, job:str, layout: dict,
        start: datetime=datetime.utcnow()-timedelta(days=180),
        end: datetime=datetime.utcnow()) -> tuple:
    """Generate graphs:
    1. Passed / failed tests,
    2. Job durations
    with additional information shown in hover.

    :param df: Data frame with input data.
    :param job: The name of job which data will be presented in the graphs.
    :param layout: Layout of plot.ly graph.
    :param start: The date (and time) when the selected data starts.
    :param end: The date (and time) when the selected data ends.
    :type df: pandas.DataFrame
    :type job: str
    :type layout: dict
    :type start: datetime.datetime
    :type end: datetime.datetime
    :returns: Tuple with two generated graphs (pased/failed tests and job
        duration).
    :rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure)
    """

    data = select_data(df, job, start, end)
    if data.empty:
        return None, None

    hover = list()
    for _, row in data.iterrows():
        d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
        hover_itm = (
            f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>"
            f"duration: "
            f"{(int(row['duration']) // 3600):02d}:"
            f"{((int(row['duration']) % 3600) // 60):02d}<br>"
            f"passed: {row['passed']}<br>"
            f"failed: {row['failed']}<br>"
            f"{d_type}-ref: {row['dut_version']}<br>"
            f"csit-ref: {row['job']}/{row['build']}<br>"
            f"hosts: {', '.join(row['hosts'])}"
        )
        hover.append(hover_itm)

    # Job durations:
    fig_duration = go.Figure(
        data=go.Scatter(
            x=data["start_time"],
            y=data["duration"],
            name=u"Duration",
            text=hover,
            hoverinfo=u"text"
        )
    )

    tickvals = [0, ]
    step = max(data["duration"]) / 5
    for i in range(5):
        tickvals.append(int(step * (i + 1)))
    layout_duration = layout.get("plot-stats-duration", dict())
    if layout_duration:
        layout_duration["yaxis"]["tickvals"] = tickvals
        layout_duration["yaxis"]["ticktext"] = [
            f"{(val // 3600):02d}:{((val % 3600) // 60):02d}" \
                for val in tickvals
        ]
        fig_duration.update_layout(layout_duration)

    # Passed / failed:
    fig_passed = go.Figure(
        data=[
            go.Bar(
                x=data["start_time"],
                y=data["passed"],
                name=u"Passed",
                hovertext=hover,
                hoverinfo=u"text"
            ),
            go.Bar(
                x=data["start_time"],
                y=data["failed"],
                name=u"Failed",
                hovertext=hover,
                hoverinfo=u"text"
            )
        ]
    )
    layout_pf = layout.get("plot-stats-passed", dict())
    if layout_pf:
        fig_passed.update_layout(layout_pf)

    return fig_passed, fig_duration