aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/trending/dashboard.py
blob: ee5ea5123f69729bf53c8415cfb2a825855c1189 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Instantiate a Dash app."""
import dash
from dash import dcc
from dash import html
from dash import dash_table
import numpy as np
import pandas as pd

from .data import create_dataframe
from .layout import html_layout


def init_dashboard(server):
    """Create a Plotly Dash dashboard.

    :param server: Flask server.
    :type server: Flask
    :returns: Dash app server.
    :rtype: Dash
    """
    dash_app = dash.Dash(
        server=server,
        routes_pathname_prefix="/trending/",
        external_stylesheets=[
            "/static/dist/css/styles.css",
            "https://fonts.googleapis.com/css?family=Lato",
        ],
    )

    # Load DataFrame
    df = create_dataframe()

    # Custom HTML layout
    dash_app.index_string = html_layout

    # Create Layout
    dash_app.layout = html.Div(
        children=[
            create_data_table(df),
        ],
        id="dash-container",
    )
    return dash_app.server


def create_data_table(df):
    """Create Dash datatable from Pandas DataFrame."""
    table = dash_table.DataTable(
        id="database-table",
        columns=[{"name": i, "id": i} for i in df.columns],
        data=df.to_dict("records"),
        sort_action="native",
        sort_mode="native",
        page_size=300,
    )
    return table