aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/trending/graphs.py
blob: 150b7056ba7d680e0992b96d4c802a920299b38f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
"""

import logging
import plotly.graph_objects as go
import pandas as pd

import hdrh.histogram
import hdrh.codec

from datetime import datetime
from numpy import isnan

from ..jumpavg import classify


_NORM_FREQUENCY = 2.0  # [GHz]
_FREQURENCY = {  # [GHz]
    "2n-aws": 1.000,
    "2n-dnv": 2.000,
    "2n-clx": 2.300,
    "2n-icx": 2.600,
    "2n-skx": 2.500,
    "2n-tx2": 2.500,
    "2n-zn2": 2.900,
    "3n-alt": 3.000,
    "3n-aws": 1.000,
    "3n-dnv": 2.000,
    "3n-icx": 2.600,
    "3n-skx": 2.500,
    "3n-tsh": 2.200
}

_ANOMALY_COLOR = {
    "regression": 0.0,
    "normal": 0.5,
    "progression": 1.0
}
_COLORSCALE_TPUT = [
    [0.00, "red"],
    [0.33, "red"],
    [0.33, "white"],
    [0.66, "white"],
    [0.66, "green"],
    [1.00, "green"]
]
_TICK_TEXT_TPUT = ["Regression", "Normal", "Progression"]
_COLORSCALE_LAT = [
    [0.00, "green"],
    [0.33, "green"],
    [0.33, "white"],
    [0.66, "white"],
    [0.66, "red"],
    [1.00, "red"]
]
_TICK_TEXT_LAT = ["Progression", "Normal", "Regression"]
_VALUE = {
    "mrr": "result_receive_rate_rate_avg",
    "ndr": "result_ndr_lower_rate_value",
    "pdr": "result_pdr_lower_rate_value",
    "pdr-lat": "result_latency_forward_pdr_50_avg"
}
_UNIT = {
    "mrr": "result_receive_rate_rate_unit",
    "ndr": "result_ndr_lower_rate_unit",
    "pdr": "result_pdr_lower_rate_unit",
    "pdr-lat": "result_latency_forward_pdr_50_unit"
}
_LAT_HDRH = (  # Do not change the order
    "result_latency_forward_pdr_0_hdrh",
    "result_latency_reverse_pdr_0_hdrh",
    "result_latency_forward_pdr_10_hdrh",
    "result_latency_reverse_pdr_10_hdrh",
    "result_latency_forward_pdr_50_hdrh",
    "result_latency_reverse_pdr_50_hdrh",
    "result_latency_forward_pdr_90_hdrh",
    "result_latency_reverse_pdr_90_hdrh",
)
# This value depends on latency stream rate (9001 pps) and duration (5s).
# Keep it slightly higher to ensure rounding errors to not remove tick mark.
PERCENTILE_MAX = 99.999501

_GRAPH_LAT_HDRH_DESC = {
    "result_latency_forward_pdr_0_hdrh": "No-load.",
    "result_latency_reverse_pdr_0_hdrh": "No-load.",
    "result_latency_forward_pdr_10_hdrh": "Low-load, 10% PDR.",
    "result_latency_reverse_pdr_10_hdrh": "Low-load, 10% PDR.",
    "result_latency_forward_pdr_50_hdrh": "Mid-load, 50% PDR.",
    "result_latency_reverse_pdr_50_hdrh": "Mid-load, 50% PDR.",
    "result_latency_forward_pdr_90_hdrh": "High-load, 90% PDR.",
    "result_latency_reverse_pdr_90_hdrh": "High-load, 90% PDR."
}


def _get_color(idx: int) -> str:
    """
    """
    _COLORS = (
        "#1A1110", "#DA2647", "#214FC6", "#01786F", "#BD8260", "#FFD12A",
        "#A6E7FF", "#738276", "#C95A49", "#FC5A8D", "#CEC8EF", "#391285",
        "#6F2DA8", "#FF878D", "#45A27D", "#FFD0B9", "#FD5240", "#DB91EF",
        "#44D7A8", "#4F86F7", "#84DE02", "#FFCFF1", "#614051"
    )
    return _COLORS[idx % len(_COLORS)]


def _get_hdrh_latencies(row: pd.Series, name: str) -> dict:
    """
    """

    latencies = {"name": name}
    for key in _LAT_HDRH:
        try:
            latencies[key] = row[key]
        except KeyError:
            return None

    return latencies


def _classify_anomalies(data):
    """Process the data and return anomalies and trending values.

    Gather data into groups with average as trend value.
    Decorate values within groups to be normal,
    the first value of changed average as a regression, or a progression.

    :param data: Full data set with unavailable samples replaced by nan.
    :type data: OrderedDict
    :returns: Classification and trend values
    :rtype: 3-tuple, list of strings, list of floats and list of floats
    """
    # NaN means something went wrong.
    # Use 0.0 to cause that being reported as a severe regression.
    bare_data = [0.0 if isnan(sample) else sample for sample in data.values()]
    # TODO: Make BitCountingGroupList a subclass of list again?
    group_list = classify(bare_data).group_list
    group_list.reverse()  # Just to use .pop() for FIFO.
    classification = list()
    avgs = list()
    stdevs = list()
    active_group = None
    values_left = 0
    avg = 0.0
    stdv = 0.0
    for sample in data.values():
        if isnan(sample):
            classification.append("outlier")
            avgs.append(sample)
            stdevs.append(sample)
            continue
        if values_left < 1 or active_group is None:
            values_left = 0
            while values_left < 1:  # Ignore empty groups (should not happen).
                active_group = group_list.pop()
                values_left = len(active_group.run_list)
            avg = active_group.stats.avg
            stdv = active_group.stats.stdev
            classification.append(active_group.comment)
            avgs.append(avg)
            stdevs.append(stdv)
            values_left -= 1
            continue
        classification.append("normal")
        avgs.append(avg)
        stdevs.append(stdv)
        values_left -= 1
    return classification, avgs, stdevs


def select_trending_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
    """
    """

    phy = itm["phy"].split("-")
    if len(phy) == 4:
        topo, arch, nic, drv = phy
        if drv == "dpdk":
            drv = ""
        else:
            drv += "-"
            drv = drv.replace("_", "-")
    else:
        return None

    core = str() if itm["dut"] == "trex" else f"{itm['core']}"
    ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
    dut_v100 = "none" if itm["dut"] == "trex" else itm["dut"]
    dut_v101 = itm["dut"]

    df = data.loc[(
        (
            (
                (data["version"] == "1.0.0") &
                (data["dut_type"].str.lower() == dut_v100)
            ) |
            (
                (data["version"] == "1.0.1") &
                (data["dut_type"].str.lower() == dut_v101)
            )
        ) &
        (data["test_type"] == ttype) &
        (data["passed"] == True)
    )]
    df = df[df.job.str.endswith(f"{topo}-{arch}")]
    df = df[df.test_id.str.contains(
        f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$",
        regex=True
    )].sort_values(by="start_time", ignore_index=True)

    return df


def _generate_trending_traces(ttype: str, name: str, df: pd.DataFrame,
    start: datetime, end: datetime, color: str, norm_factor: float) -> list:
    """
    """

    df = df.dropna(subset=[_VALUE[ttype], ])
    if df.empty:
        return list()
    df = df.loc[((df["start_time"] >= start) & (df["start_time"] <= end))]
    if df.empty:
        return list()

    x_axis = df["start_time"].tolist()
    y_data = [itm * norm_factor for itm in df[_VALUE[ttype]].tolist()]

    anomalies, trend_avg, trend_stdev = _classify_anomalies(
        {k: v for k, v in zip(x_axis, y_data)}
    )

    hover = list()
    customdata = list()
    for _, row in df.iterrows():
        d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
        hover_itm = (
            f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>"
            f"<prop> [{row[_UNIT[ttype]]}]: {row[_VALUE[ttype]]:,.0f}<br>"
            f"<stdev>"
            f"{d_type}-ref: {row['dut_version']}<br>"
            f"csit-ref: {row['job']}/{row['build']}<br>"
            f"hosts: {', '.join(row['hosts'])}"
        )
        if ttype == "mrr":
            stdev = (
                f"stdev [{row['result_receive_rate_rate_unit']}]: "
                f"{row['result_receive_rate_rate_stdev']:,.0f}<br>"
            )
        else:
            stdev = ""
        hover_itm = hover_itm.replace(
            "<prop>", "latency" if ttype == "pdr-lat" else "average"
        ).replace("<stdev>", stdev)
        hover.append(hover_itm)
        if ttype == "pdr-lat":
            customdata.append(_get_hdrh_latencies(row, name))

    hover_trend = list()
    for avg, stdev, (_, row) in zip(trend_avg, trend_stdev, df.iterrows()):
        d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
        hover_itm = (
            f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>"
            f"trend [pps]: {avg:,.0f}<br>"
            f"stdev [pps]: {stdev:,.0f}<br>"
            f"{d_type}-ref: {row['dut_version']}<br>"
            f"csit-ref: {row['job']}/{row['build']}<br>"
            f"hosts: {', '.join(row['hosts'])}"
        )
        if ttype == "pdr-lat":
            hover_itm = hover_itm.replace("[pps]", "[us]")
        hover_trend.append(hover_itm)

    traces = [
        go.Scatter(  # Samples
            x=x_axis,
            y=y_data,
            name=name,
            mode="markers",
            marker={
                "size": 5,
                "color": color,
                "symbol": "circle",
            },
            text=hover,
            hoverinfo="text+name",
            showlegend=True,
            legendgroup=name,
            customdata=customdata
        ),
        go.Scatter(  # Trend line
            x=x_axis,
            y=trend_avg,
            name=name,
            mode="lines",
            line={
                "shape": "linear",
                "width": 1,
                "color": color,
            },
            text=hover_trend,
            hoverinfo="text+name",
            showlegend=False,
            legendgroup=name,
        )
    ]

    if anomalies:
        anomaly_x = list()
        anomaly_y = list()
        anomaly_color = list()
        hover = list()
        for idx, anomaly in enumerate(anomalies):
            if anomaly in ("regression", "progression"):
                anomaly_x.append(x_axis[idx])
                anomaly_y.append(trend_avg[idx])
                anomaly_color.append(_ANOMALY_COLOR[anomaly])
                hover_itm = (
                    f"date: {x_axis[idx].strftime('%Y-%m-%d %H:%M:%S')}<br>"
                    f"trend [pps]: {trend_avg[idx]:,.0f}<br>"
                    f"classification: {anomaly}"
                )
                if ttype == "pdr-lat":
                    hover_itm = hover_itm.replace("[pps]", "[us]")
                hover.append(hover_itm)
        anomaly_color.extend([0.0, 0.5, 1.0])
        traces.append(
            go.Scatter(
                x=anomaly_x,
                y=anomaly_y,
                mode="markers",
                text=hover,
                hoverinfo="text+name",
                showlegend=False,
                legendgroup=name,
                name=name,
                marker={
                    "size": 15,
                    "symbol": "circle-open",
                    "color": anomaly_color,
                    "colorscale": _COLORSCALE_LAT \
                        if ttype == "pdr-lat" else _COLORSCALE_TPUT,
                    "showscale": True,
                    "line": {
                        "width": 2
                    },
                    "colorbar": {
                        "y": 0.5,
                        "len": 0.8,
                        "title": "Circles Marking Data Classification",
                        "titleside": "right",
                        "tickmode": "array",
                        "tickvals": [0.167, 0.500, 0.833],
                        "ticktext": _TICK_TEXT_LAT \
                            if ttype == "pdr-lat" else _TICK_TEXT_TPUT,
                        "ticks": "",
                        "ticklen": 0,
                        "tickangle": -90,
                        "thickness": 10
                    }
                }
            )
        )

    return traces


def graph_trending(data: pd.DataFrame, sel:dict, layout: dict,
    start: datetime, end: datetime, normalize: bool) -> tuple:
    """
    """

    if not sel:
        return None, None

    fig_tput = None
    fig_lat = None
    for idx, itm in enumerate(sel):

        df = select_trending_data(data, itm)
        if df is None or df.empty:
            continue

        name = "-".join((itm["dut"], itm["phy"], itm["framesize"], itm["core"],
            itm["test"], itm["testtype"], ))
        if normalize:
            phy = itm["phy"].split("-")
            topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
            norm_factor = (_NORM_FREQUENCY / _FREQURENCY[topo_arch]) \
                if topo_arch else 1.0
        else:
            norm_factor = 1.0
        traces = _generate_trending_traces(
            itm["testtype"], name, df, start, end, _get_color(idx), norm_factor
        )
        if traces:
            if not fig_tput:
                fig_tput = go.Figure()
            fig_tput.add_traces(traces)

        if itm["testtype"] == "pdr":
            traces = _generate_trending_traces(
                "pdr-lat", name, df, start, end, _get_color(idx), norm_factor
            )
            if traces:
                if not fig_lat:
                    fig_lat = go.Figure()
                fig_lat.add_traces(traces)

    if fig_tput:
        fig_tput.update_layout(layout.get("plot-trending-tput", dict()))
    if fig_lat:
        fig_lat.update_layout(layout.get("plot-trending-lat", dict()))

    return fig_tput, fig_lat


def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
    """
    """

    fig = None

    traces = list()
    for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
        try:
            decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
        except (hdrh.codec.HdrLengthException, TypeError) as err:
            continue
        previous_x = 0.0
        prev_perc = 0.0
        xaxis = list()
        yaxis = list()
        hovertext = list()
        for item in decoded.get_recorded_iterator():
            # The real value is "percentile".
            # For 100%, we cut that down to "x_perc" to avoid
            # infinity.
            percentile = item.percentile_level_iterated_to
            x_perc = min(percentile, PERCENTILE_MAX)
            xaxis.append(previous_x)
            yaxis.append(item.value_iterated_to)
            hovertext.append(
                f"<b>{_GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
                f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
                f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
                f"Latency: {item.value_iterated_to}uSec"
            )
            next_x = 100.0 / (100.0 - x_perc)
            xaxis.append(next_x)
            yaxis.append(item.value_iterated_to)
            hovertext.append(
                f"<b>{_GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
                f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
                f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
                f"Latency: {item.value_iterated_to}uSec"
            )
            previous_x = next_x
            prev_perc = percentile

        traces.append(
            go.Scatter(
                x=xaxis,
                y=yaxis,
                name=_GRAPH_LAT_HDRH_DESC[lat_name],
                mode="lines",
                legendgroup=_GRAPH_LAT_HDRH_DESC[lat_name],
                showlegend=bool(idx % 2),
                line=dict(
                    color=_get_color(int(idx/2)),
                    dash="solid",
                    width=1 if idx % 2 else 2
                ),
                hovertext=hovertext,
                hoverinfo="text"
            )
        )
    if traces:
        fig = go.Figure()
        fig.add_traces(traces)
        layout_hdrh = layout.get("plot-hdrh-latency", None)
        if lat_hdrh:
            fig.update_layout(layout_hdrh)

    return fig