aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/dash/app/pal/trending/graphs.py
blob: 06bea25466cf4c123aa7b528dcc0145a7fee7e45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
"""

import plotly.graph_objects as go
import pandas as pd

import hdrh.histogram
import hdrh.codec

from datetime import datetime

from ..utils.constants import Constants as C
from ..utils.utils import classify_anomalies, get_color


def _get_hdrh_latencies(row: pd.Series, name: str) -> dict:
    """Get the HDRH latencies from the test data.

    :param row: A row fron the data frame with test data.
    :param name: The test name to be displayed as the graph title.
    :type row: pandas.Series
    :type name: str
    :returns: Dictionary with HDRH latencies.
    :rtype: dict
    """

    latencies = {"name": name}
    for key in C.LAT_HDRH:
        try:
            latencies[key] = row[key]
        except KeyError:
            return None

    return latencies


def select_trending_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
    """Select the data for graphs from the provided data frame.

    :param data: Data frame with data for graphs.
    :param itm: Item (in this case job name) which data will be selected from
        the input data frame.
    :type data: pandas.DataFrame
    :type itm: str
    :returns: A data frame with selected data.
    :rtype: pandas.DataFrame
    """

    phy = itm["phy"].split("-")
    if len(phy) == 4:
        topo, arch, nic, drv = phy
        if drv == "dpdk":
            drv = ""
        else:
            drv += "-"
            drv = drv.replace("_", "-")
    else:
        return None

    core = str() if itm["dut"] == "trex" else f"{itm['core']}"
    ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
    dut_v100 = "none" if itm["dut"] == "trex" else itm["dut"]
    dut_v101 = itm["dut"]

    df = data.loc[(
        (
            (
                (data["version"] == "1.0.0") &
                (data["dut_type"].str.lower() == dut_v100)
            ) |
            (
                (data["version"] == "1.0.1") &
                (data["dut_type"].str.lower() == dut_v101)
            )
        ) &
        (data["test_type"] == ttype) &
        (data["passed"] == True)
    )]
    df = df[df.job.str.endswith(f"{topo}-{arch}")]
    df = df[df.test_id.str.contains(
        f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$",
        regex=True
    )].sort_values(by="start_time", ignore_index=True)

    return df


def _generate_trending_traces(ttype: str, name: str, df: pd.DataFrame,
    start: datetime, end: datetime, color: str, norm_factor: float) -> list:
    """Generate the trending traces for the trending graph.

    :param ttype: Test type (MRR, NDR, PDR).
    :param name: The test name to be displayed as the graph title.
    :param df: Data frame with test data.
    :param start: The date (and time) when the selected data starts.
    :param end: The date (and time) when the selected data ends.
    :param color: The color of the trace (samples and trend line).
    :param norm_factor: The factor used for normalization of the results to CPU
        frequency set to Constants.NORM_FREQUENCY.
    :type ttype: str
    :type name: str
    :type df: pandas.DataFrame
    :type start: datetime.datetime
    :type end: datetime.datetime
    :type color: str
    :type norm_factor: float
    :returns: Traces (samples, trending line, anomalies)
    :rtype: list
    """

    df = df.dropna(subset=[C.VALUE[ttype], ])
    if df.empty:
        return list()
    df = df.loc[((df["start_time"] >= start) & (df["start_time"] <= end))]
    if df.empty:
        return list()

    x_axis = df["start_time"].tolist()
    if ttype == "pdr-lat":
        y_data = [(itm / norm_factor) for itm in df[C.VALUE[ttype]].tolist()]
    else:
        y_data = [(itm * norm_factor) for itm in df[C.VALUE[ttype]].tolist()]

    anomalies, trend_avg, trend_stdev = classify_anomalies(
        {k: v for k, v in zip(x_axis, y_data)}
    )

    hover = list()
    customdata = list()
    for idx, (_, row) in enumerate(df.iterrows()):
        d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
        hover_itm = (
            f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>"
            f"<prop> [{row[C.UNIT[ttype]]}]: {y_data[idx]:,.0f}<br>"
            f"<stdev>"
            f"{d_type}-ref: {row['dut_version']}<br>"
            f"csit-ref: {row['job']}/{row['build']}<br>"
            f"hosts: {', '.join(row['hosts'])}"
        )
        if ttype == "mrr":
            stdev = (
                f"stdev [{row['result_receive_rate_rate_unit']}]: "
                f"{row['result_receive_rate_rate_stdev']:,.0f}<br>"
            )
        else:
            stdev = ""
        hover_itm = hover_itm.replace(
            "<prop>", "latency" if ttype == "pdr-lat" else "average"
        ).replace("<stdev>", stdev)
        hover.append(hover_itm)
        if ttype == "pdr-lat":
            customdata.append(_get_hdrh_latencies(row, name))

    hover_trend = list()
    for avg, stdev, (_, row) in zip(trend_avg, trend_stdev, df.iterrows()):
        d_type = "trex" if row["dut_type"] == "none" else row["dut_type"]
        hover_itm = (
            f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>"
            f"trend [pps]: {avg:,.0f}<br>"
            f"stdev [pps]: {stdev:,.0f}<br>"
            f"{d_type}-ref: {row['dut_version']}<br>"
            f"csit-ref: {row['job']}/{row['build']}<br>"
            f"hosts: {', '.join(row['hosts'])}"
        )
        if ttype == "pdr-lat":
            hover_itm = hover_itm.replace("[pps]", "[us]")
        hover_trend.append(hover_itm)

    traces = [
        go.Scatter(  # Samples
            x=x_axis,
            y=y_data,
            name=name,
            mode="markers",
            marker={
                "size": 5,
                "color": color,
                "symbol": "circle",
            },
            text=hover,
            hoverinfo="text+name",
            showlegend=True,
            legendgroup=name,
            customdata=customdata
        ),
        go.Scatter(  # Trend line
            x=x_axis,
            y=trend_avg,
            name=name,
            mode="lines",
            line={
                "shape": "linear",
                "width": 1,
                "color": color,
            },
            text=hover_trend,
            hoverinfo="text+name",
            showlegend=False,
            legendgroup=name,
        )
    ]

    if anomalies:
        anomaly_x = list()
        anomaly_y = list()
        anomaly_color = list()
        hover = list()
        for idx, anomaly in enumerate(anomalies):
            if anomaly in ("regression", "progression"):
                anomaly_x.append(x_axis[idx])
                anomaly_y.append(trend_avg[idx])
                anomaly_color.append(C.ANOMALY_COLOR[anomaly])
                hover_itm = (
                    f"date: {x_axis[idx].strftime('%Y-%m-%d %H:%M:%S')}<br>"
                    f"trend [pps]: {trend_avg[idx]:,.0f}<br>"
                    f"classification: {anomaly}"
                )
                if ttype == "pdr-lat":
                    hover_itm = hover_itm.replace("[pps]", "[us]")
                hover.append(hover_itm)
        anomaly_color.extend([0.0, 0.5, 1.0])
        traces.append(
            go.Scatter(
                x=anomaly_x,
                y=anomaly_y,
                mode="markers",
                text=hover,
                hoverinfo="text+name",
                showlegend=False,
                legendgroup=name,
                name=name,
                marker={
                    "size": 15,
                    "symbol": "circle-open",
                    "color": anomaly_color,
                    "colorscale": C.COLORSCALE_LAT \
                        if ttype == "pdr-lat" else C.COLORSCALE_TPUT,
                    "showscale": True,
                    "line": {
                        "width": 2
                    },
                    "colorbar": {
                        "y": 0.5,
                        "len": 0.8,
                        "title": "Circles Marking Data Classification",
                        "titleside": "right",
                        "tickmode": "array",
                        "tickvals": [0.167, 0.500, 0.833],
                        "ticktext": C.TICK_TEXT_LAT \
                            if ttype == "pdr-lat" else C.TICK_TEXT_TPUT,
                        "ticks": "",
                        "ticklen": 0,
                        "tickangle": -90,
                        "thickness": 10
                    }
                }
            )
        )

    return traces


def graph_trending(data: pd.DataFrame, sel:dict, layout: dict,
    start: datetime, end: datetime, normalize: bool) -> tuple:
    """Generate the trending graph(s) - MRR, NDR, PDR and for PDR also Latences
    (result_latency_forward_pdr_50_avg).

    :param data: Data frame with test results.
    :param sel: Selected tests.
    :param layout: Layout of plot.ly graph.
    :param start: The date (and time) when the selected data starts.
    :param end: The date (and time) when the selected data ends.
    :param normalize: If True, the data is normalized to CPU frquency
        Constants.NORM_FREQUENCY.
    :type data: pandas.DataFrame
    :type sel: dict
    :type layout: dict
    :type start: datetime.datetime
    :type end: datetype.datetype
    :type normalize: bool
    :returns: Trending graph(s)
    :rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure)
    """

    if not sel:
        return None, None

    fig_tput = None
    fig_lat = None
    for idx, itm in enumerate(sel):

        df = select_trending_data(data, itm)
        if df is None or df.empty:
            continue

        name = "-".join((itm["dut"], itm["phy"], itm["framesize"], itm["core"],
            itm["test"], itm["testtype"], ))
        if normalize:
            phy = itm["phy"].split("-")
            topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
            norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY[topo_arch]) \
                if topo_arch else 1.0
        else:
            norm_factor = 1.0
        traces = _generate_trending_traces(
            itm["testtype"], name, df, start, end, get_color(idx), norm_factor
        )
        if traces:
            if not fig_tput:
                fig_tput = go.Figure()
            fig_tput.add_traces(traces)

        if itm["testtype"] == "pdr":
            traces = _generate_trending_traces(
                "pdr-lat", name, df, start, end, get_color(idx), norm_factor
            )
            if traces:
                if not fig_lat:
                    fig_lat = go.Figure()
                fig_lat.add_traces(traces)

    if fig_tput:
        fig_tput.update_layout(layout.get("plot-trending-tput", dict()))
    if fig_lat:
        fig_lat.update_layout(layout.get("plot-trending-lat", dict()))

    return fig_tput, fig_lat


def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure:
    """Generate HDR Latency histogram graphs.

    :param data: HDRH data.
    :param layout: Layout of plot.ly graph.
    :type data: dict
    :type layout: dict
    :returns: HDR latency Histogram.
    :rtype: plotly.graph_objects.Figure
    """

    fig = None

    traces = list()
    for idx, (lat_name, lat_hdrh) in enumerate(data.items()):
        try:
            decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh)
        except (hdrh.codec.HdrLengthException, TypeError) as err:
            continue
        previous_x = 0.0
        prev_perc = 0.0
        xaxis = list()
        yaxis = list()
        hovertext = list()
        for item in decoded.get_recorded_iterator():
            # The real value is "percentile".
            # For 100%, we cut that down to "x_perc" to avoid
            # infinity.
            percentile = item.percentile_level_iterated_to
            x_perc = min(percentile, C.PERCENTILE_MAX)
            xaxis.append(previous_x)
            yaxis.append(item.value_iterated_to)
            hovertext.append(
                f"<b>{C.GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
                f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
                f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
                f"Latency: {item.value_iterated_to}uSec"
            )
            next_x = 100.0 / (100.0 - x_perc)
            xaxis.append(next_x)
            yaxis.append(item.value_iterated_to)
            hovertext.append(
                f"<b>{C.GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>"
                f"Direction: {('W-E', 'E-W')[idx % 2]}<br>"
                f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>"
                f"Latency: {item.value_iterated_to}uSec"
            )
            previous_x = next_x
            prev_perc = percentile

        traces.append(
            go.Scatter(
                x=xaxis,
                y=yaxis,
                name=C.GRAPH_LAT_HDRH_DESC[lat_name],
                mode="lines",
                legendgroup=C.GRAPH_LAT_HDRH_DESC[lat_name],
                showlegend=bool(idx % 2),
                line=dict(
                    color=get_color(int(idx/2)),
                    dash="solid",
                    width=1 if idx % 2 else 2
                ),
                hovertext=hovertext,
                hoverinfo="text"
            )
        )
    if traces:
        fig = go.Figure()
        fig.add_traces(traces)
        layout_hdrh = layout.get("plot-hdrh-latency", None)
        if lat_hdrh:
            fig.update_layout(layout_hdrh)

    return fig