1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
# Copyright (c) 2022 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Generation of Continuous Performance Trending and Analysis.
"""
import re
import logging
import csv
from collections import OrderedDict
from datetime import datetime
from copy import deepcopy
from os import listdir
import prettytable
import plotly.offline as ploff
import plotly.graph_objs as plgo
import plotly.exceptions as plerr
from pal_utils import archive_input_data, execute_command, classify_anomalies
# Command to build the html format of the report
HTML_BUILDER = u'sphinx-build -v -c sphinx_conf/trending -a ' \
u'-b html -E ' \
u'-t html ' \
u'-D version="{date}" ' \
u'{working_dir} ' \
u'{build_dir}/'
# .css file for the html format of the report
THEME_OVERRIDES = u"""/* override table width restrictions */
.wy-nav-content {
max-width: 1200px !important;
}
.rst-content blockquote {
margin-left: 0px;
line-height: 18px;
margin-bottom: 0px;
}
.wy-menu-vertical a {
display: inline-block;
line-height: 18px;
padding: 0 2em;
display: block;
position: relative;
font-size: 90%;
color: #d9d9d9
}
.wy-menu-vertical li.current a {
color: gray;
border-right: solid 1px #c9c9c9;
padding: 0 3em;
}
.wy-menu-vertical li.toctree-l2.current > a {
background: #c9c9c9;
padding: 0 3em;
}
.wy-menu-vertical li.toctree-l2.current li.toctree-l3 > a {
display: block;
background: #c9c9c9;
padding: 0 4em;
}
.wy-menu-vertical li.toctree-l3.current li.toctree-l4 > a {
display: block;
background: #bdbdbd;
padding: 0 5em;
}
.wy-menu-vertical li.on a, .wy-menu-vertical li.current > a {
color: #404040;
padding: 0 2em;
font-weight: bold;
position: relative;
background: #fcfcfc;
border: none;
border-top-width: medium;
border-bottom-width: medium;
border-top-style: none;
border-bottom-style: none;
border-top-color: currentcolor;
border-bottom-color: currentcolor;
padding-left: 2em -4px;
}
"""
COLORS = (
u"#1A1110",
u"#DA2647",
u"#214FC6",
u"#01786F",
u"#BD8260",
u"#FFD12A",
u"#A6E7FF",
u"#738276",
u"#C95A49",
u"#FC5A8D",
u"#CEC8EF",
u"#391285",
u"#6F2DA8",
u"#FF878D",
u"#45A27D",
u"#FFD0B9",
u"#FD5240",
u"#DB91EF",
u"#44D7A8",
u"#4F86F7",
u"#84DE02",
u"#FFCFF1",
u"#614051"
)
def generate_cpta(spec, data):
"""Generate all formats and versions of the Continuous Performance Trending
and Analysis.
:param spec: Specification read from the specification file.
:param data: Full data set.
:type spec: Specification
:type data: InputData
"""
logging.info(u"Generating the Continuous Performance Trending and Analysis "
u"...")
ret_code = _generate_all_charts(spec, data)
cmd = HTML_BUILDER.format(
date=datetime.utcnow().strftime(u'%Y-%m-%d %H:%M UTC'),
working_dir=spec.environment[u'paths'][u'DIR[WORKING,SRC]'],
build_dir=spec.environment[u'paths'][u'DIR[BUILD,HTML]'])
execute_command(cmd)
with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE]'], u'w') as \
css_file:
css_file.write(THEME_OVERRIDES)
with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE2]'], u'w') as \
css_file:
css_file.write(THEME_OVERRIDES)
if spec.environment.get(u"archive-inputs", False):
archive_input_data(spec)
logging.info(u"Done.")
return ret_code
def _generate_trending_traces(in_data, job_name, build_info,
name=u"", color=u"", incl_tests=u"mrr"):
"""Generate the trending traces:
- samples,
- outliers, regress, progress
- average of normal samples (trending line)
:param in_data: Full data set.
:param job_name: The name of job which generated the data.
:param build_info: Information about the builds.
:param name: Name of the plot
:param color: Name of the color for the plot.
:param incl_tests: Included tests, accepted values: mrr, ndr, pdr
:type in_data: OrderedDict
:type job_name: str
:type build_info: dict
:type name: str
:type color: str
:type incl_tests: str
:returns: Generated traces (list) and the evaluated result.
:rtype: tuple(traces, result)
"""
if incl_tests not in (u"mrr", u"ndr", u"pdr", u"pdr-lat"):
return list(), None
data_x = list(in_data.keys())
data_y_pps = list()
data_y_mpps = list()
data_y_stdev = list()
if incl_tests == u"pdr-lat":
for item in in_data.values():
data_y_pps.append(float(item.get(u"lat_1", u"nan")) / 1e6)
data_y_stdev.append(float(u"nan"))
data_y_mpps.append(float(item.get(u"lat_1", u"nan")) / 1e6)
multi = 1.0
else:
for item in in_data.values():
data_y_pps.append(float(item[u"receive-rate"]))
data_y_stdev.append(float(item[u"receive-stdev"]) / 1e6)
data_y_mpps.append(float(item[u"receive-rate"]) / 1e6)
multi = 1e6
hover_text = list()
xaxis = list()
for index, key in enumerate(data_x):
str_key = str(key)
date = build_info[job_name][str_key][0]
hover_str = (u"date: {date}<br>"
u"{property} [Mpps]: <val><br>"
u"<stdev>"
u"{sut}-ref: {build}<br>"
u"csit-ref: {test}-{period}-build-{build_nr}<br>"
u"testbed: {testbed}")
if incl_tests == u"mrr":
hover_str = hover_str.replace(
u"<stdev>", f"stdev [Mpps]: {data_y_stdev[index]:.3f}<br>"
)
else:
hover_str = hover_str.replace(u"<stdev>", u"")
if incl_tests == u"pdr-lat":
hover_str = hover_str.replace(u"<val>", u"{value:.1e}")
else:
hover_str = hover_str.replace(u"<val>", u"{value:.3f}")
if u"-cps" in name:
hover_str = hover_str.replace(u"[Mpps]", u"[Mcps]").\
replace(u"throughput", u"connection rate")
if u"vpp" in job_name:
hover_str = hover_str.format(
date=date,
property=u"average" if incl_tests == u"mrr" else u"throughput",
value=data_y_mpps[index],
sut=u"vpp",
build=build_info[job_name][str_key][1].rsplit(u'~', 1)[0],
test=incl_tests,
period=u"daily" if incl_tests == u"mrr" else u"weekly",
build_nr=str_key,
testbed=build_info[job_name][str_key][2])
elif u"dpdk" in job_name:
hover_str = hover_str.format(
date=date,
property=u"average" if incl_tests == u"mrr" else u"throughput",
value=data_y_mpps[index],
sut=u"dpdk",
build=build_info[job_name][str_key][1].rsplit(u'~', 1)[0],
test=incl_tests,
period=u"weekly",
build_nr=str_key,
testbed=build_info[job_name][str_key][2])
elif u"trex" in job_name:
hover_str = hover_str.format(
date=date,
property=u"average" if incl_tests == u"mrr" else u"throughput",
value=data_y_mpps[index],
sut=u"trex",
build=u"",
test=incl_tests,
period=u"daily" if incl_tests == u"mrr" else u"weekly",
build_nr=str_key,
testbed=build_info[job_name][str_key][2])
if incl_tests == u"pdr-lat":
hover_str = hover_str.replace(
u"throughput [Mpps]", u"latency [s]"
)
hover_text.append(hover_str)
xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
int(date[9:11]), int(date[12:])))
data_pd = OrderedDict()
for key, value in zip(xaxis, data_y_pps):
data_pd[key] = value
try:
anomaly_classification, avgs_pps, stdevs_pps = \
classify_anomalies(data_pd)
except ValueError as err:
logging.info(f"{err} Skipping")
return list(), None
avgs_mpps = [avg_pps / multi for avg_pps in avgs_pps]
stdevs_mpps = [stdev_pps / multi for stdev_pps in stdevs_pps]
anomalies = OrderedDict()
anomalies_colors = list()
anomalies_avgs = list()
anomaly_color = {
u"regression": 0.0,
u"normal": 0.5,
u"progression": 1.0
}
if anomaly_classification:
for index, (key, value) in enumerate(data_pd.items()):
if anomaly_classification[index] in (u"regression", u"progression"):
anomalies[key] = value / multi
anomalies_colors.append(
anomaly_color[anomaly_classification[index]])
anomalies_avgs.append(avgs_mpps[index])
anomalies_colors.extend([0.0, 0.5, 1.0])
# Create traces
trace_samples = plgo.Scatter(
x=xaxis,
y=data_y_mpps,
mode=u"markers",
line={
u"width": 1
},
showlegend=True,
legendgroup=name,
name=f"{name}",
marker={
u"size": 5,
u"color": color,
u"symbol": u"circle",
},
text=hover_text,
hoverinfo=u"text+name"
)
traces = [trace_samples, ]
trend_hover_text = list()
for idx in range(len(data_x)):
if incl_tests == u"pdr-lat":
trend_hover_str = (
f"trend [s]: {avgs_mpps[idx]:.1e}<br>"
)
else:
trend_hover_str = (
f"trend [Mpps]: {avgs_mpps[idx]:.3f}<br>"
f"stdev [Mpps]: {stdevs_mpps[idx]:.3f}"
)
trend_hover_text.append(trend_hover_str)
trace_trend = plgo.Scatter(
x=xaxis,
y=avgs_mpps,
mode=u"lines",
line={
u"shape": u"linear",
u"width": 1,
u"color": color,
},
showlegend=False,
legendgroup=name,
name=f"{name}",
text=trend_hover_text,
hoverinfo=u"text+name"
)
traces.append(trace_trend)
if incl_tests == u"pdr-lat":
colorscale = [
[0.00, u"green"],
[0.33, u"green"],
[0.33, u"white"],
[0.66, u"white"],
[0.66, u"red"],
[1.00, u"red"]
]
ticktext = [u"Progression", u"Normal", u"Regression"]
else:
colorscale = [
[0.00, u"red"],
[0.33, u"red"],
[0.33, u"white"],
[0.66, u"white"],
[0.66, u"green"],
[1.00, u"green"]
]
ticktext = [u"Regression", u"Normal", u"Progression"]
trace_anomalies = plgo.Scatter(
x=list(anomalies.keys()),
y=anomalies_avgs,
mode=u"markers",
hoverinfo=u"none",
showlegend=False,
legendgroup=name,
name=f"{name}-anomalies",
marker={
u"size": 15,
u"symbol": u"circle-open",
u"color": anomalies_colors,
u"colorscale": colorscale,
u"showscale": True,
u"line": {
u"width": 2
},
u"colorbar": {
u"y": 0.5,
u"len": 0.8,
u"title": u"Circles Marking Data Classification",
u"titleside": u"right",
u"titlefont": {
u"size": 14
},
u"tickmode": u"array",
u"tickvals": [0.167, 0.500, 0.833],
u"ticktext": ticktext,
u"ticks": u"",
u"ticklen": 0,
u"tickangle": -90,
u"thickness": 10
}
}
)
traces.append(trace_anomalies)
if anomaly_classification:
return traces, anomaly_classification[-1]
return traces, None
def _generate_all_charts(spec, input_data):
"""Generate all charts specified in the specification file.
:param spec: Specification.
:param input_data: Full data set.
:type spec: Specification
:type input_data: InputData
"""
def _generate_chart(graph):
"""Generates the chart.
:param graph: The graph to be generated
:type graph: dict
:returns: Dictionary with the job name, csv table with results and
list of tests classification results.
:rtype: dict
"""
logging.info(f" Generating the chart {graph.get(u'title', u'')} ...")
job_name = list(graph[u"data"].keys())[0]
# Transform the data
logging.info(
f" Creating the data set for the {graph.get(u'type', u'')} "
f"{graph.get(u'title', u'')}."
)
data = input_data.filter_tests_by_name(
graph,
params=[u"type", u"result", u"throughput", u"latency", u"tags"],
continue_on_error=True
)
if data is None or data.empty:
logging.error(u"No data.")
return dict()
return_lst = list()
for ttype in graph.get(u"test-type", (u"mrr", )):
for core in graph.get(u"core", tuple()):
csv_tbl = list()
csv_tbl_lat_1 = list()
csv_tbl_lat_2 = list()
res = dict()
chart_data = dict()
chart_tags = dict()
for item in graph.get(u"include", tuple()):
reg_ex = re.compile(str(item.format(core=core)).lower())
for job, job_data in data.items():
if job != job_name:
continue
for index, bld in job_data.items():
for test_id, test in bld.items():
if not re.match(reg_ex, str(test_id).lower()):
continue
if chart_data.get(test_id, None) is None:
chart_data[test_id] = OrderedDict()
try:
lat_1 = u""
lat_2 = u""
if ttype == u"mrr":
rate = test[u"result"][u"receive-rate"]
stdev = \
test[u"result"][u"receive-stdev"]
elif ttype == u"ndr":
rate = \
test["throughput"][u"NDR"][u"LOWER"]
stdev = float(u"nan")
elif ttype == u"pdr":
rate = \
test["throughput"][u"PDR"][u"LOWER"]
stdev = float(u"nan")
lat_1 = test[u"latency"][u"PDR50"]\
[u"direction1"][u"avg"]
lat_2 = test[u"latency"][u"PDR50"]\
[u"direction2"][u"avg"]
else:
continue
chart_data[test_id][int(index)] = {
u"receive-rate": rate,
u"receive-stdev": stdev
}
if ttype == u"pdr":
chart_data[test_id][int(index)].update(
{
u"lat_1": lat_1,
u"lat_2": lat_2
}
)
chart_tags[test_id] = \
test.get(u"tags", None)
except (KeyError, TypeError):
pass
# Add items to the csv table:
for tst_name, tst_data in chart_data.items():
tst_lst = list()
tst_lst_lat_1 = list()
tst_lst_lat_2 = list()
for bld in builds_dict[job_name]:
itm = tst_data.get(int(bld), dict())
# CSIT-1180: Itm will be list, compute stats.
try:
tst_lst.append(str(itm.get(u"receive-rate", u"")))
if ttype == u"pdr":
tst_lst_lat_1.append(
str(itm.get(u"lat_1", u""))
)
tst_lst_lat_2.append(
str(itm.get(u"lat_2", u""))
)
except AttributeError:
tst_lst.append(u"")
if ttype == u"pdr":
tst_lst_lat_1.append(u"")
tst_lst_lat_2.append(u"")
csv_tbl.append(f"{tst_name}," + u",".join(tst_lst) + u'\n')
csv_tbl_lat_1.append(
f"{tst_name}," + u",".join(tst_lst_lat_1) + u"\n"
)
csv_tbl_lat_2.append(
f"{tst_name}," + u",".join(tst_lst_lat_2) + u"\n"
)
# Generate traces:
traces = list()
traces_lat = list()
index = 0
groups = graph.get(u"groups", None)
visibility = list()
if groups:
for group in groups:
visible = list()
for tag in group:
for tst_name, test_data in chart_data.items():
if not test_data:
logging.warning(
f"No data for the test {tst_name}"
)
continue
if tag not in chart_tags[tst_name]:
continue
try:
trace, rslt = _generate_trending_traces(
test_data,
job_name=job_name,
build_info=build_info,
name=u'-'.join(tst_name.split(u'.')[-1].
split(u'-')[2:-1]),
color=COLORS[index],
incl_tests=ttype
)
except IndexError:
logging.error(f"Out of colors: index: "
f"{index}, test: {tst_name}")
index += 1
continue
traces.extend(trace)
visible.extend(
[True for _ in range(len(trace))]
)
res[tst_name] = rslt
index += 1
break
visibility.append(visible)
else:
for tst_name, test_data in chart_data.items():
if not test_data:
logging.warning(f"No data for the test {tst_name}")
continue
try:
trace, rslt = _generate_trending_traces(
test_data,
job_name=job_name,
build_info=build_info,
name=u'-'.join(
tst_name.split(u'.')[-1].split(u'-')[2:-1]),
color=COLORS[index],
incl_tests=ttype
)
if ttype == u"pdr":
trace_lat, _ = _generate_trending_traces(
test_data,
job_name=job_name,
build_info=build_info,
name=u'-'.join(
tst_name.split(u'.')[-1].split(
u'-')[2:-1]),
color=COLORS[index],
incl_tests=u"pdr-lat"
)
traces_lat.extend(trace_lat)
except IndexError:
logging.error(
f"Out of colors: index: "
f"{index}, test: {tst_name}"
)
index += 1
continue
traces.extend(trace)
res[tst_name] = rslt
index += 1
if traces:
# Generate the chart:
try:
layout = deepcopy(graph[u"layout"])
except KeyError as err:
logging.error(u"Finished with error: No layout defined")
logging.error(repr(err))
return dict()
if groups:
show = list()
for i in range(len(visibility)):
visible = list()
for vis_idx, _ in enumerate(visibility):
for _ in range(len(visibility[vis_idx])):
visible.append(i == vis_idx)
show.append(visible)
buttons = list()
buttons.append(dict(
label=u"All",
method=u"update",
args=[{u"visible":
[True for _ in range(len(show[0]))]}, ]
))
for i in range(len(groups)):
try:
label = graph[u"group-names"][i]
except (IndexError, KeyError):
label = f"Group {i + 1}"
buttons.append(dict(
label=label,
method=u"update",
args=[{u"visible": show[i]}, ]
))
layout[u"updatemenus"] = list([
dict(
active=0,
type=u"dropdown",
direction=u"down",
xanchor=u"left",
yanchor=u"bottom",
x=-0.12,
y=1.0,
buttons=buttons
)
])
name_file = (
f"{spec.cpta[u'output-file']}/"
f"{graph[u'output-file-name']}.html"
)
name_file = name_file.format(core=core, test_type=ttype)
logging.info(f" Writing the file {name_file}")
plpl = plgo.Figure(data=traces, layout=layout)
try:
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=name_file
)
except plerr.PlotlyEmptyDataError:
logging.warning(u"No data for the plot. Skipped.")
if traces_lat:
try:
layout = deepcopy(graph[u"layout"])
layout[u"yaxis"][u"title"] = u"Latency [s]"
layout[u"yaxis"][u"tickformat"] = u".3s"
except KeyError as err:
logging.error(u"Finished with error: No layout defined")
logging.error(repr(err))
return dict()
name_file = (
f"{spec.cpta[u'output-file']}/"
f"{graph[u'output-file-name']}-lat.html"
)
name_file = name_file.format(core=core, test_type=ttype)
logging.info(f" Writing the file {name_file}")
plpl = plgo.Figure(data=traces_lat, layout=layout)
try:
ploff.plot(
plpl,
show_link=False,
auto_open=False,
filename=name_file
)
except plerr.PlotlyEmptyDataError:
logging.warning(u"No data for the plot. Skipped.")
return_lst.append(
{
u"job_name": job_name,
u"csv_table": csv_tbl,
u"csv_lat_1": csv_tbl_lat_1,
u"csv_lat_2": csv_tbl_lat_2,
u"results": res
}
)
return return_lst
builds_dict = dict()
for job, builds in spec.input.items():
if builds_dict.get(job, None) is None:
builds_dict[job] = list()
for build in builds:
if build[u"status"] not in (u"failed", u"not found", u"removed",
None):
builds_dict[job].append(str(build[u"build"]))
# Create "build ID": "date" dict:
build_info = dict()
tb_tbl = spec.environment.get(u"testbeds", None)
for job_name, job_data in builds_dict.items():
if build_info.get(job_name, None) is None:
build_info[job_name] = OrderedDict()
for build in job_data:
testbed = u""
tb_ip = input_data.metadata(job_name, build).get(u"testbed", u"")
if tb_ip and tb_tbl:
testbed = tb_tbl.get(tb_ip, u"")
build_info[job_name][build] = (
input_data.metadata(job_name, build).get(u"generated", u""),
input_data.metadata(job_name, build).get(u"version", u""),
testbed
)
anomaly_classifications = dict()
# Create the table header:
csv_tables = dict()
csv_tables_l1 = dict()
csv_tables_l2 = dict()
for job_name in builds_dict:
if csv_tables.get(job_name, None) is None:
csv_tables[job_name] = list()
if csv_tables_l1.get(job_name, None) is None:
csv_tables_l1[job_name] = list()
if csv_tables_l2.get(job_name, None) is None:
csv_tables_l2[job_name] = list()
header = f"Build Number:,{u','.join(builds_dict[job_name])}\n"
csv_tables[job_name].append(header)
csv_tables_l1[job_name].append(header)
csv_tables_l2[job_name].append(header)
build_dates = [x[0] for x in build_info[job_name].values()]
header = f"Build Date:,{u','.join(build_dates)}\n"
csv_tables[job_name].append(header)
csv_tables_l1[job_name].append(header)
csv_tables_l2[job_name].append(header)
versions = [x[1] for x in build_info[job_name].values()]
header = f"Version:,{u','.join(versions)}\n"
csv_tables[job_name].append(header)
csv_tables_l1[job_name].append(header)
csv_tables_l2[job_name].append(header)
testbed = [x[2] for x in build_info[job_name].values()]
header = f"Test bed:,{u','.join(testbed)}\n"
csv_tables[job_name].append(header)
csv_tables_l1[job_name].append(header)
csv_tables_l2[job_name].append(header)
for chart in spec.cpta[u"plots"]:
results = _generate_chart(chart)
if not results:
continue
for result in results:
csv_tables[result[u"job_name"]].extend(result[u"csv_table"])
csv_tables_l1[result[u"job_name"]].extend(result[u"csv_lat_1"])
csv_tables_l2[result[u"job_name"]].extend(result[u"csv_lat_2"])
if anomaly_classifications.get(result[u"job_name"], None) is None:
anomaly_classifications[result[u"job_name"]] = dict()
anomaly_classifications[result[u"job_name"]].\
update(result[u"results"])
# Write the tables:
for job_name, csv_table in csv_tables.items():
file_name = f"{spec.cpta[u'output-file']}/{job_name}-trending"
with open(f"{file_name}.csv", u"wt") as file_handler:
file_handler.writelines(csv_table)
txt_table = None
with open(f"{file_name}.csv", u"rt") as csv_file:
csv_content = csv.reader(csv_file, delimiter=u',', quotechar=u'"')
line_nr = 0
for row in csv_content:
if txt_table is None:
txt_table = prettytable.PrettyTable(row)
else:
if line_nr > 1:
for idx, item in enumerate(row):
try:
row[idx] = str(round(float(item) / 1000000, 2))
except ValueError:
pass
try:
txt_table.add_row(row)
# PrettyTable raises Exception
except Exception as err:
logging.warning(
f"Error occurred while generating TXT table:\n{err}"
)
line_nr += 1
txt_table.align[u"Build Number:"] = u"l"
with open(f"{file_name}.txt", u"wt") as txt_file:
txt_file.write(str(txt_table))
for job_name, csv_table in csv_tables_l1.items():
file_name = f"{spec.cpta[u'output-file']}/{job_name}-lat-P50-50-d1"
with open(f"{file_name}.csv", u"wt") as file_handler:
file_handler.writelines(csv_table)
for job_name, csv_table in csv_tables_l2.items():
file_name = f"{spec.cpta[u'output-file']}/{job_name}-lat-P50-50-d2"
with open(f"{file_name}.csv", u"wt") as file_handler:
file_handler.writelines(csv_table)
# Evaluate result:
if anomaly_classifications:
result = u"PASS"
class MaxLens:
"""Class to store the max lengths of strings displayed in
regressions and progressions.
"""
def __init__(self, tst, nic, frmsize, trend, run, ltc):
"""Initialisation.
:param tst: Name of the test.
:param nic: NIC used in the test.
:param frmsize: Frame size used in the test.
:param trend: Trend Change.
:param run: Number of runs for last trend.
:param ltc: Regression or Progression
"""
self.tst = tst
self.nic = nic
self.frmsize = frmsize
self.trend = trend
self.run = run
self.ltc = ltc
for job_name, job_data in anomaly_classifications.items():
data = []
test_reg_lst = []
nic_reg_lst = []
frmsize_reg_lst = []
trend_reg_lst = []
number_reg_lst = []
ltc_reg_lst = []
test_prog_lst = []
nic_prog_lst = []
frmsize_prog_lst = []
trend_prog_lst = []
number_prog_lst = []
ltc_prog_lst = []
max_len = MaxLens(0, 0, 0, 0, 0, 0)
# tb - testbed (2n-skx, 3n-dnv, etc)
tb = u"-".join(job_name.split(u"-")[-2:])
# data - read all txt dashboard files for tb
for file in listdir(f"{spec.cpta[u'output-file']}"):
if tb in file and u"performance-trending-dashboard" in \
file and u"txt" in file:
file_to_read = f"{spec.cpta[u'output-file']}/{file}"
with open(f"{file_to_read}", u"rt") as f_in:
data = data + f_in.readlines()
for test_name, classification in job_data.items():
if classification != u"normal":
if u"2n" in test_name:
test_name = test_name.split("-", 2)
tst = test_name[2].split(".")[-1]
nic = test_name[1]
else:
test_name = test_name.split("-", 1)
tst = test_name[1].split(".")[-1]
nic = test_name[0].split(".")[-1]
frmsize = tst.split("-")[0]
tst = u"-".join(tst.split("-")[1:])
tst_name = f"{nic}-{frmsize}-{tst}"
if len(tst) > max_len.tst:
max_len.tst = len(tst)
if len(nic) > max_len.nic:
max_len.nic = len(nic)
if len(frmsize) > max_len.frmsize:
max_len.frmsize = len(frmsize)
for line in data:
if tst_name in line:
line = line.replace(" ", "")
trend = line.split("|")[2]
if len(str(trend)) > max_len.trend:
max_len.trend = len(str(trend))
number = line.split("|")[3]
if len(str(number)) > max_len.run:
max_len.run = len(str(number))
ltc = line.split("|")[4]
if len(str(ltc)) > max_len.ltc:
max_len.ltc = len(str(ltc))
if classification == u'regression':
test_reg_lst.append(tst)
nic_reg_lst.append(nic)
frmsize_reg_lst.append(frmsize)
trend_reg_lst.append(trend)
number_reg_lst.append(number)
ltc_reg_lst.append(ltc)
elif classification == u'progression':
test_prog_lst.append(tst)
nic_prog_lst.append(nic)
frmsize_prog_lst.append(frmsize)
trend_prog_lst.append(trend)
number_prog_lst.append(number)
ltc_prog_lst.append(ltc)
text = u""
for idx in range(len(test_reg_lst)):
text += (
f"{test_reg_lst[idx]}"
f"{u' ' * (max_len.tst - len(test_reg_lst[idx]))} "
f"{nic_reg_lst[idx]}"
f"{u' ' * (max_len.nic - len(nic_reg_lst[idx]))} "
f"{frmsize_reg_lst[idx].upper()}"
f"{u' ' * (max_len.frmsize - len(frmsize_reg_lst[idx]))} "
f"{trend_reg_lst[idx]}"
f"{u' ' * (max_len.trend - len(str(trend_reg_lst[idx])))} "
f"{number_reg_lst[idx]}"
f"{u' ' * (max_len.run - len(str(number_reg_lst[idx])))} "
f"{ltc_reg_lst[idx]}"
f"{u' ' * (max_len.ltc - len(str(ltc_reg_lst[idx])))} "
f"\n"
)
file_name = \
f"{spec.cpta[u'output-file']}/regressions-{job_name}.txt"
try:
with open(f"{file_name}", u'w') as txt_file:
txt_file.write(text)
except IOError:
logging.error(
f"Not possible to write the file {file_name}.")
text = u""
for idx in range(len(test_prog_lst)):
text += (
f"{test_prog_lst[idx]}"
f"{u' ' * (max_len.tst - len(test_prog_lst[idx]))} "
f"{nic_prog_lst[idx]}"
f"{u' ' * (max_len.nic - len(nic_prog_lst[idx]))} "
f"{frmsize_prog_lst[idx].upper()}"
f"{u' ' * (max_len.frmsize - len(frmsize_prog_lst[idx]))} "
f"{trend_prog_lst[idx]}"
f"{u' ' * (max_len.trend -len(str(trend_prog_lst[idx])))} "
f"{number_prog_lst[idx]}"
f"{u' ' * (max_len.run - len(str(number_prog_lst[idx])))} "
f"{ltc_prog_lst[idx]}"
f"{u' ' * (max_len.ltc - len(str(ltc_prog_lst[idx])))} "
f"\n"
)
file_name = \
f"{spec.cpta[u'output-file']}/progressions-{job_name}.txt"
try:
with open(f"{file_name}", u'w') as txt_file:
txt_file.write(text)
except IOError:
logging.error(f"Not possible to write the file {file_name}.")
else:
result = u"FAIL"
logging.info(f"Partial results: {anomaly_classifications}")
logging.info(f"Result: {result}")
return result
|