aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_plots.py
blob: 51b29407c3c6e1a81327ba5261f325d696ab9ae7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# Copyright (c) 2018 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Algorithms to generate plots.
"""


import logging
import pandas as pd
import plotly.offline as ploff
import plotly.graph_objs as plgo

from plotly.exceptions import PlotlyError
from collections import OrderedDict
from copy import deepcopy

from utils import mean


COLORS = ["SkyBlue", "Olive", "Purple", "Coral", "Indigo", "Pink",
          "Chocolate", "Brown", "Magenta", "Cyan", "Orange", "Black",
          "Violet", "Blue", "Yellow", "BurlyWood", "CadetBlue", "Crimson",
          "DarkBlue", "DarkCyan", "DarkGreen", "Green", "GoldenRod",
          "LightGreen", "LightSeaGreen", "LightSkyBlue", "Maroon",
          "MediumSeaGreen", "SeaGreen", "LightSlateGrey"]


def generate_plots(spec, data):
    """Generate all plots specified in the specification file.

    :param spec: Specification read from the specification file.
    :param data: Data to process.
    :type spec: Specification
    :type data: InputData
    """

    logging.info("Generating the plots ...")
    for index, plot in enumerate(spec.plots):
        try:
            logging.info("  Plot nr {0}: {1}".format(index + 1,
                                                     plot.get("title", "")))
            plot["limits"] = spec.configuration["limits"]
            eval(plot["algorithm"])(plot, data)
            logging.info("  Done.")
        except NameError as err:
            logging.error("Probably algorithm '{alg}' is not defined: {err}".
                          format(alg=plot["algorithm"], err=repr(err)))
    logging.info("Done.")


def plot_performance_box(plot, input_data):
    """Generate the plot(s) with algorithm: plot_performance_box
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    plot_title = plot.get("title", "")
    logging.info("    Creating the data set for the {0} '{1}'.".
                 format(plot.get("type", ""), plot_title))
    data = input_data.filter_data(plot)
    if data is None:
        logging.error("No data.")
        return

    # Prepare the data for the plot
    y_vals = dict()
    y_tags = dict()
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test["parent"], None) is None:
                    y_vals[test["parent"]] = list()
                    y_tags[test["parent"]] = test.get("tags", None)
                try:
                    if test["type"] in ("NDRPDR", ):
                        if "-pdr" in plot_title.lower():
                            y_vals[test["parent"]].\
                                append(test["throughput"]["PDR"]["LOWER"])
                        elif "-ndr" in plot_title.lower():
                            y_vals[test["parent"]]. \
                                append(test["throughput"]["NDR"]["LOWER"])
                        else:
                            continue
                    else:
                        continue
                except (KeyError, TypeError):
                    y_vals[test["parent"]].append(None)

    # Sort the tests
    order = plot.get("sort", None)
    if order and y_tags:
        y_sorted = OrderedDict()
        y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
        for tag in order:
            logging.info(tag)
            for suite, tags in y_tags_l.items():
                if "not " in tag:
                    tag = tag.split(" ")[-1]
                    if tag.lower() in tags:
                        continue
                else:
                    if tag.lower() not in tags:
                        continue
                try:
                    y_sorted[suite] = y_vals.pop(suite)
                    y_tags_l.pop(suite)
                    logging.info(suite)
                except KeyError as err:
                    logging.error("Not found: {0}".format(err))
                finally:
                    break
    else:
        y_sorted = y_vals

    # Add None to the lists with missing data
    max_len = 0
    for val in y_sorted.values():
        if len(val) > max_len:
            max_len = len(val)
    for key, val in y_sorted.items():
        if len(val) < max_len:
            val.extend([None for _ in range(max_len - len(val))])

    # Add plot traces
    traces = list()
    df = pd.DataFrame(y_sorted)
    df.head()
    y_max = list()
    for i, col in enumerate(df.columns):
        name = "{0}. {1}".format(i + 1, col.lower().replace('-ndrpdrdisc', '').
                                 replace('-ndrpdr', ''))
        logging.info(name)
        traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]),
                               y=[y / 1000000 if y else None for y in df[col]],
                               name=name,
                               **plot["traces"]))
        val_max = max(df[col])
        if val_max:
            y_max.append(int(val_max / 1000000) + 1)

    try:
        # Create plot
        layout = deepcopy(plot["layout"])
        if layout.get("title", None):
            layout["title"] = "<b>Packet Throughput:</b> {0}". \
                format(layout["title"])
        if y_max:
            layout["yaxis"]["range"] = [0, max(y_max)]
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        logging.info("    Writing file '{0}{1}'.".
                     format(plot["output-file"], plot["output-file-type"]))
        ploff.plot(plpl, show_link=False, auto_open=False,
                   filename='{0}{1}'.format(plot["output-file"],
                                            plot["output-file-type"]))
    except PlotlyError as err:
        logging.error("   Finished with error: {}".
                      format(str(err).replace("\n", " ")))
        return


def plot_latency_error_bars(plot, input_data):
    """Generate the plot(s) with algorithm: plot_latency_error_bars
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    plot_title = plot.get("title", "")
    logging.info("    Creating the data set for the {0} '{1}'.".
                 format(plot.get("type", ""), plot_title))
    data = input_data.filter_data(plot)
    if data is None:
        logging.error("No data.")
        return

    # Prepare the data for the plot
    y_tmp_vals = dict()
    y_tags = dict()
    for job in data:
        for build in job:
            for test in build:
                if y_tmp_vals.get(test["parent"], None) is None:
                    y_tmp_vals[test["parent"]] = [
                        list(),  # direction1, min
                        list(),  # direction1, avg
                        list(),  # direction1, max
                        list(),  # direction2, min
                        list(),  # direction2, avg
                        list()   # direction2, max
                    ]
                    y_tags[test["parent"]] = test.get("tags", None)
                try:
                    if test["type"] in ("NDRPDR", ):
                        if "-pdr" in plot_title.lower():
                            ttype = "PDR"
                        elif "-ndr" in plot_title.lower():
                            ttype = "NDR"
                        else:
                            continue
                        y_tmp_vals[test["parent"]][0].append(
                            test["latency"][ttype]["direction1"]["min"])
                        y_tmp_vals[test["parent"]][1].append(
                            test["latency"][ttype]["direction1"]["avg"])
                        y_tmp_vals[test["parent"]][2].append(
                            test["latency"][ttype]["direction1"]["max"])
                        y_tmp_vals[test["parent"]][3].append(
                            test["latency"][ttype]["direction2"]["min"])
                        y_tmp_vals[test["parent"]][4].append(
                            test["latency"][ttype]["direction2"]["avg"])
                        y_tmp_vals[test["parent"]][5].append(
                            test["latency"][ttype]["direction2"]["max"])
                    else:
                        continue
                except (KeyError, TypeError):
                    pass

    # Sort the tests
    order = plot.get("sort", None)
    if order and y_tags:
        y_sorted = OrderedDict()
        y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
        for tag in order:
            for suite, tags in y_tags_l.items():
                if tag.lower() in tags:
                    try:
                        y_sorted[suite] = y_tmp_vals.pop(suite)
                        y_tags_l.pop(suite)
                    except KeyError as err:
                        logging.error("Not found: {0}".format(err))
                    finally:
                        break
    else:
        y_sorted = y_tmp_vals

    x_vals = list()
    y_vals = list()
    y_mins = list()
    y_maxs = list()
    for key, val in y_sorted.items():
        key = "-".join(key.split("-")[1:-1])
        x_vals.append(key)  # dir 1
        y_vals.append(mean(val[1]) if val[1] else None)
        y_mins.append(mean(val[0]) if val[0] else None)
        y_maxs.append(mean(val[2]) if val[2] else None)
        x_vals.append(key)  # dir 2
        y_vals.append(mean(val[4]) if val[4] else None)
        y_mins.append(mean(val[3]) if val[3] else None)
        y_maxs.append(mean(val[5]) if val[5] else None)

    traces = list()
    annotations = list()

    for idx in range(len(x_vals)):
        if not bool(int(idx % 2)):
            direction = "West - East"
        else:
            direction = "East - West"
        hovertext = ("Test: {test}<br>"
                     "Direction: {dir}<br>".format(test=x_vals[idx],
                                                   dir=direction))
        if isinstance(y_maxs[idx], float):
            hovertext += "Max: {max:.2f}uSec<br>".format(max=y_maxs[idx])
        if isinstance(y_vals[idx], float):
            hovertext += "Avg: {avg:.2f}uSec<br>".format(avg=y_vals[idx])
        if isinstance(y_mins[idx], float):
            hovertext += "Min: {min:.2f}uSec".format(min=y_mins[idx])

        if isinstance(y_maxs[idx], float) and isinstance(y_vals[idx], float):
            array = [y_maxs[idx] - y_vals[idx], ]
        else:
            array = [None, ]
        if isinstance(y_mins[idx], float) and isinstance(y_vals[idx], float):
            arrayminus = [y_vals[idx] - y_mins[idx], ]
        else:
            arrayminus = [None, ]
        traces.append(plgo.Scatter(
            x=[idx, ],
            y=[y_vals[idx], ],
            name=x_vals[idx],
            legendgroup=x_vals[idx],
            showlegend=bool(int(idx % 2)),
            mode="markers",
            error_y=dict(
                type='data',
                symmetric=False,
                array=array,
                arrayminus=arrayminus,
                color=COLORS[int(idx / 2)]
            ),
            marker=dict(
                size=10,
                color=COLORS[int(idx / 2)],
            ),
            text=hovertext,
            hoverinfo="text",
        ))
        annotations.append(dict(
            x=idx,
            y=0,
            xref="x",
            yref="y",
            xanchor="center",
            yanchor="top",
            text="E-W" if bool(int(idx % 2)) else "W-E",
            font=dict(
                size=16,
            ),
            align="center",
            showarrow=False
        ))

    try:
        # Create plot
        logging.info("    Writing file '{0}{1}'.".
                     format(plot["output-file"], plot["output-file-type"]))
        layout = deepcopy(plot["layout"])
        if layout.get("title", None):
            layout["title"] = "<b>Packet Latency:</b> {0}".\
                format(layout["title"])
        layout["annotations"] = annotations
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        ploff.plot(plpl,
                   show_link=False, auto_open=False,
                   filename='{0}{1}'.format(plot["output-file"],
                                            plot["output-file-type"]))
    except PlotlyError as err:
        logging.error("   Finished with error: {}".
                      format(str(err).replace("\n", " ")))
        return


def plot_throughput_speedup_analysis(plot, input_data):
    """Generate the plot(s) with algorithm:
    plot_throughput_speedup_analysis
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    plot_title = plot.get("title", "")
    logging.info("    Creating the data set for the {0} '{1}'.".
                 format(plot.get("type", ""), plot_title))
    data = input_data.filter_data(plot)
    if data is None:
        logging.error("No data.")
        return

    y_vals = dict()
    y_tags = dict()
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test["parent"], None) is None:
                    y_vals[test["parent"]] = {"1": list(),
                                              "2": list(),
                                              "4": list()}
                    y_tags[test["parent"]] = test.get("tags", None)
                try:
                    if test["type"] in ("NDRPDR",):
                        if "-pdr" in plot_title.lower():
                            ttype = "PDR"
                        elif "-ndr" in plot_title.lower():
                            ttype = "NDR"
                        else:
                            continue
                        if "1C" in test["tags"]:
                            y_vals[test["parent"]]["1"]. \
                                append(test["throughput"][ttype]["LOWER"])
                        elif "2C" in test["tags"]:
                            y_vals[test["parent"]]["2"]. \
                                append(test["throughput"][ttype]["LOWER"])
                        elif "4C" in test["tags"]:
                            y_vals[test["parent"]]["4"]. \
                                append(test["throughput"][ttype]["LOWER"])
                except (KeyError, TypeError):
                    pass

    if not y_vals:
        logging.warning("No data for the plot '{}'".
                        format(plot.get("title", "")))
        return

    y_1c_max = dict()
    for test_name, test_vals in y_vals.items():
        for key, test_val in test_vals.items():
            if test_val:
                y_vals[test_name][key] = sum(test_val) / len(test_val)
                if key == "1":
                    y_1c_max[test_name] = max(test_val) / 1000000.0

    vals = dict()
    y_max = list()
    nic_limit = 0
    lnk_limit = 0
    pci_limit = plot["limits"]["pci"]["pci-g3-x8"]
    for test_name, test_vals in y_vals.items():
        if test_vals["1"]:
            name = "-".join(test_name.split('-')[1:-1])

            vals[name] = dict()
            y_val_1 = test_vals["1"] / 1000000.0
            y_val_2 = test_vals["2"] / 1000000.0 if test_vals["2"] else None
            y_val_4 = test_vals["4"] / 1000000.0 if test_vals["4"] else None

            vals[name]["val"] = [y_val_1, y_val_2, y_val_4]
            vals[name]["rel"] = [1.0, None, None]
            vals[name]["ideal"] = [y_1c_max[test_name],
                                   y_1c_max[test_name] * 2,
                                   y_1c_max[test_name] * 4]
            vals[name]["diff"] = \
                [(y_val_1 - y_1c_max[test_name]) * 100 / y_val_1, None, None]

            try:
                val_max = max(max(vals[name]["val"], vals[name]["ideal"]))
            except ValueError as err:
                logging.error(err)
                continue
            if val_max:
                y_max.append(int((val_max / 10) + 1) * 10)

            if y_val_2:
                vals[name]["rel"][1] = round(y_val_2 / y_val_1, 2)
                vals[name]["diff"][1] = \
                    (y_val_2 - vals[name]["ideal"][1]) * 100 / y_val_2
            if y_val_4:
                vals[name]["rel"][2] = round(y_val_4 / y_val_1, 2)
                vals[name]["diff"][2] = \
                    (y_val_4 - vals[name]["ideal"][2]) * 100 / y_val_4

        # Limits:
        if "x520" in test_name:
            limit = plot["limits"]["nic"]["x520"]
        elif "x710" in test_name:
            limit = plot["limits"]["nic"]["x710"]
        elif "xxv710" in test_name:
            limit = plot["limits"]["nic"]["xxv710"]
        elif "xl710" in test_name:
            limit = plot["limits"]["nic"]["xl710"]
        else:
            limit = 0
        if limit > nic_limit:
            nic_limit = limit

        mul = 2 if "ge2p" in test_name else 1
        if "10ge" in test_name:
            limit = plot["limits"]["link"]["10ge"] * mul
        elif "25ge" in test_name:
            limit = plot["limits"]["link"]["25ge"] * mul
        elif "40ge" in test_name:
            limit = plot["limits"]["link"]["40ge"] * mul
        elif "100ge" in test_name:
            limit = plot["limits"]["link"]["100ge"] * mul
        else:
            limit = 0
        if limit > lnk_limit:
            lnk_limit = limit

    # Sort the tests
    order = plot.get("sort", None)
    if order and y_tags:
        y_sorted = OrderedDict()
        y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
        for tag in order:
            for test, tags in y_tags_l.items():
                if tag.lower() in tags:
                    name = "-".join(test.split('-')[1:-1])
                    try:
                        y_sorted[name] = vals.pop(name)
                        y_tags_l.pop(test)
                    except KeyError as err:
                        logging.error("Not found: {0}".format(err))
                    finally:
                        break
    else:
        y_sorted = vals

    traces = list()
    annotations = list()
    x_vals = [1, 2, 4]

    # Limits:
    try:
        threshold = 1.1 * max(y_max)  # 10%
    except ValueError as err:
        logging.error(err)
        return
    nic_limit /= 1000000.0
    if nic_limit < threshold:
        traces.append(plgo.Scatter(
            x=x_vals,
            y=[nic_limit, ] * len(x_vals),
            name="NIC: {0:.2f}Mpps".format(nic_limit),
            showlegend=False,
            mode="lines",
            line=dict(
                dash="dot",
                color=COLORS[-1],
                width=1),
            hoverinfo="none"
        ))
        annotations.append(dict(
            x=1,
            y=nic_limit,
            xref="x",
            yref="y",
            xanchor="left",
            yanchor="bottom",
            text="NIC: {0:.2f}Mpps".format(nic_limit),
            font=dict(
                size=14,
                color=COLORS[-1],
            ),
            align="left",
            showarrow=False
        ))
        y_max.append(int((nic_limit / 10) + 1) * 10)

    lnk_limit /= 1000000.0
    if lnk_limit < threshold:
        traces.append(plgo.Scatter(
            x=x_vals,
            y=[lnk_limit, ] * len(x_vals),
            name="Link: {0:.2f}Mpps".format(lnk_limit),
            showlegend=False,
            mode="lines",
            line=dict(
                dash="dot",
                color=COLORS[-2],
                width=1),
            hoverinfo="none"
        ))
        annotations.append(dict(
            x=1,
            y=lnk_limit,
            xref="x",
            yref="y",
            xanchor="left",
            yanchor="bottom",
            text="Link: {0:.2f}Mpps".format(lnk_limit),
            font=dict(
                size=14,
                color=COLORS[-2],
            ),
            align="left",
            showarrow=False
        ))
        y_max.append(int((lnk_limit / 10) + 1) * 10)

    pci_limit /= 1000000.0
    if pci_limit < threshold:
        traces.append(plgo.Scatter(
            x=x_vals,
            y=[pci_limit, ] * len(x_vals),
            name="PCIe: {0:.2f}Mpps".format(pci_limit),
            showlegend=False,
            mode="lines",
            line=dict(
                dash="dot",
                color=COLORS[-3],
                width=1),
            hoverinfo="none"
        ))
        annotations.append(dict(
            x=1,
            y=pci_limit,
            xref="x",
            yref="y",
            xanchor="left",
            yanchor="bottom",
            text="PCIe: {0:.2f}Mpps".format(pci_limit),
            font=dict(
                size=14,
                color=COLORS[-3],
            ),
            align="left",
            showarrow=False
        ))
        y_max.append(int((pci_limit / 10) + 1) * 10)

    # Perfect and measured:
    cidx = 0
    for name, val in y_sorted.iteritems():
        hovertext = list()
        for idx in range(len(val["val"])):
            htext = ""
            if isinstance(val["val"][idx], float):
                htext += "value: {0:.2f}Mpps<br>".format(val["val"][idx])
            if isinstance(val["diff"][idx], float):
                htext += "diff: {0:.0f}%<br>".format(round(val["diff"][idx]))
            if isinstance(val["rel"][idx], float):
                htext += "speedup: {0:.2f}".format(val["rel"][idx])
            hovertext.append(htext)
        traces.append(plgo.Scatter(x=x_vals,
                                   y=val["val"],
                                   name=name,
                                   legendgroup=name,
                                   mode="lines+markers",
                                   line=dict(
                                       color=COLORS[cidx],
                                       width=2),
                                   marker=dict(
                                       symbol="circle",
                                       size=10
                                   ),
                                   text=hovertext,
                                   hoverinfo="text+name"
                                   ))
        traces.append(plgo.Scatter(x=x_vals,
                                   y=val["ideal"],
                                   name="{0} perfect".format(name),
                                   legendgroup=name,
                                   showlegend=False,
                                   mode="lines",
                                   line=dict(
                                       color=COLORS[cidx],
                                       width=2,
                                       dash="dash"),
                                   text=["perfect: {0:.2f}Mpps".format(y)
                                         for y in val["ideal"]],
                                   hoverinfo="text"
                                   ))
        cidx += 1

    try:
        # Create plot
        logging.info("    Writing file '{0}{1}'.".
                     format(plot["output-file"], plot["output-file-type"]))
        layout = deepcopy(plot["layout"])
        if layout.get("title", None):
            layout["title"] = "<b>Speedup Multi-core:</b> {0}". \
                format(layout["title"])
        layout["annotations"].extend(annotations)
        plpl = plgo.Figure(data=traces, layout=layout)

        # Export Plot
        ploff.plot(plpl,
                   show_link=False, auto_open=False,
                   filename='{0}{1}'.format(plot["output-file"],
                                            plot["output-file-type"]))
    except PlotlyError as err:
        logging.error("   Finished with error: {}".
                      format(str(err).replace("\n", " ")))
        return


def plot_http_server_performance_box(plot, input_data):
    """Generate the plot(s) with algorithm: plot_http_server_performance_box
    specified in the specification file.

    :param plot: Plot to generate.
    :param input_data: Data to process.
    :type plot: pandas.Series
    :type input_data: InputData
    """

    # Transform the data
    logging.info("    Creating the data set for the {0} '{1}'.".
                 format(plot.get("type", ""), plot.get("title", "")))
    data = input_data.filter_data(plot)
    if data is None:
        logging.error("No data.")
        return

    # Prepare the data for the plot
    y_vals = dict()
    for job in data:
        for build in job:
            for test in build:
                if y_vals.get(test["name"], None) is None:
                    y_vals[test["name"]] = list()
                try:
                    y_vals[test["name"]].append(test["result"])
                except (KeyError, TypeError):
                    y_vals[test["name"]].append(None)

    # Add None to the lists with missing data
    max_len = 0
    for val in y_vals.values():
        if len(val) > max_len:
            max_len = len(val)
    for key, val in y_vals.items():
        if len(val) < max_len:
            val.extend([None for _ in range(max_len - len(val))])

    # Add plot traces
    traces = list()
    df = pd.DataFrame(y_vals)
    df.head()
    for i, col in enumerate(df.columns):
        name = "{0}. {1}".format(i + 1, col.lower().replace('-cps', '').
                                 replace('-rps', ''))
        traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]),
                               y=df[col],
                               name=name,
                               **plot["traces"]))
    try:
        # Create plot
        plpl = plgo.Figure(data=traces, layout=plot["layout"])

        # Export Plot
        logging.info("    Writing file '{0}{1}'.".
                     format(plot["output-file"], plot["output-file-type"]))
        ploff.plot(plpl, show_link=False, auto_open=False,
                   filename='{0}{1}'.format(plot["output-file"],
                                            plot["output-file-type"]))
    except PlotlyError as err:
        logging.error("   Finished with error: {}".
                      format(str(err).replace("\n", " ")))
        return