aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_tables.py
blob: 74579b0a9d1fa2a2f28e49457bb3c4811cd6a61f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
# Copyright (c) 2017 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Algorithms to generate tables.
"""


import logging
import csv
import prettytable
import pandas as pd

from string import replace
from math import isnan
from xml.etree import ElementTree as ET

from errors import PresentationError
from utils import mean, stdev, relative_change, remove_outliers, find_outliers


def generate_tables(spec, data):
    """Generate all tables specified in the specification file.

    :param spec: Specification read from the specification file.
    :param data: Data to process.
    :type spec: Specification
    :type data: InputData
    """

    logging.info("Generating the tables ...")
    for table in spec.tables:
        try:
            eval(table["algorithm"])(table, data)
        except NameError:
            logging.error("The algorithm '{0}' is not defined.".
                          format(table["algorithm"]))
    logging.info("Done.")


def table_details(table, input_data):
    """Generate the table(s) with algorithm: table_detailed_test_results
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    # Transform the data
    data = input_data.filter_data(table)

    # Prepare the header of the tables
    header = list()
    for column in table["columns"]:
        header.append('"{0}"'.format(str(column["title"]).replace('"', '""')))

    # Generate the data for the table according to the model in the table
    # specification
    job = table["data"].keys()[0]
    build = str(table["data"][job][0])
    try:
        suites = input_data.suites(job, build)
    except KeyError:
        logging.error("    No data available. The table will not be generated.")
        return

    for suite_longname, suite in suites.iteritems():
        # Generate data
        suite_name = suite["name"]
        table_lst = list()
        for test in data[job][build].keys():
            if data[job][build][test]["parent"] in suite_name:
                row_lst = list()
                for column in table["columns"]:
                    try:
                        col_data = str(data[job][build][test][column["data"].
                                       split(" ")[1]]).replace('"', '""')
                        if column["data"].split(" ")[1] in ("vat-history",
                                                            "show-run"):
                            col_data = replace(col_data, " |br| ", "",
                                               maxreplace=1)
                            col_data = " |prein| {0} |preout| ".\
                                format(col_data[:-5])
                        row_lst.append('"{0}"'.format(col_data))
                    except KeyError:
                        row_lst.append("No data")
                table_lst.append(row_lst)

        # Write the data to file
        if table_lst:
            file_name = "{0}_{1}{2}".format(table["output-file"], suite_name,
                                            table["output-file-ext"])
            logging.info("      Writing file: '{}'".format(file_name))
            with open(file_name, "w") as file_handler:
                file_handler.write(",".join(header) + "\n")
                for item in table_lst:
                    file_handler.write(",".join(item) + "\n")

    logging.info("  Done.")


def table_merged_details(table, input_data):
    """Generate the table(s) with algorithm: table_merged_details
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    # Transform the data
    data = input_data.filter_data(table)
    data = input_data.merge_data(data)
    data.sort_index(inplace=True)

    suites = input_data.filter_data(table, data_set="suites")
    suites = input_data.merge_data(suites)

    # Prepare the header of the tables
    header = list()
    for column in table["columns"]:
        header.append('"{0}"'.format(str(column["title"]).replace('"', '""')))

    for _, suite in suites.iteritems():
        # Generate data
        suite_name = suite["name"]
        table_lst = list()
        for test in data.keys():
            if data[test]["parent"] in suite_name:
                row_lst = list()
                for column in table["columns"]:
                    try:
                        col_data = str(data[test][column["data"].
                                       split(" ")[1]]).replace('"', '""')
                        if column["data"].split(" ")[1] in ("vat-history",
                                                            "show-run"):
                            col_data = replace(col_data, " |br| ", "",
                                               maxreplace=1)
                            col_data = " |prein| {0} |preout| ".\
                                format(col_data[:-5])
                        row_lst.append('"{0}"'.format(col_data))
                    except KeyError:
                        row_lst.append("No data")
                table_lst.append(row_lst)

        # Write the data to file
        if table_lst:
            file_name = "{0}_{1}{2}".format(table["output-file"], suite_name,
                                            table["output-file-ext"])
            logging.info("      Writing file: '{}'".format(file_name))
            with open(file_name, "w") as file_handler:
                file_handler.write(",".join(header) + "\n")
                for item in table_lst:
                    file_handler.write(",".join(item) + "\n")

    logging.info("  Done.")


def table_performance_improvements(table, input_data):
    """Generate the table(s) with algorithm: table_performance_improvements
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    def _write_line_to_file(file_handler, data):
        """Write a line to the .csv file.

        :param file_handler: File handler for the csv file. It must be open for
         writing text.
        :param data: Item to be written to the file.
        :type file_handler: BinaryIO
        :type data: list
        """

        line_lst = list()
        for item in data:
            if isinstance(item["data"], str):
                # Remove -?drdisc from the end
                if item["data"].endswith("drdisc"):
                    item["data"] = item["data"][:-8]
                line_lst.append(item["data"])
            elif isinstance(item["data"], float):
                line_lst.append("{:.1f}".format(item["data"]))
            elif item["data"] is None:
                line_lst.append("")
        file_handler.write(",".join(line_lst) + "\n")

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    # Read the template
    file_name = table.get("template", None)
    if file_name:
        try:
            tmpl = _read_csv_template(file_name)
        except PresentationError:
            logging.error("  The template '{0}' does not exist. Skipping the "
                          "table.".format(file_name))
            return None
    else:
        logging.error("The template is not defined. Skipping the table.")
        return None

    # Transform the data
    data = input_data.filter_data(table)

    # Prepare the header of the tables
    header = list()
    for column in table["columns"]:
        header.append(column["title"])

    # Generate the data for the table according to the model in the table
    # specification
    tbl_lst = list()
    for tmpl_item in tmpl:
        tbl_item = list()
        for column in table["columns"]:
            cmd = column["data"].split(" ")[0]
            args = column["data"].split(" ")[1:]
            if cmd == "template":
                try:
                    val = float(tmpl_item[int(args[0])])
                except ValueError:
                    val = tmpl_item[int(args[0])]
                tbl_item.append({"data": val})
            elif cmd == "data":
                jobs = args[0:-1]
                operation = args[-1]
                data_lst = list()
                for job in jobs:
                    for build in data[job]:
                        try:
                            data_lst.append(float(build[tmpl_item[0]]
                                                  ["throughput"]["value"]))
                        except (KeyError, TypeError):
                            # No data, ignore
                            continue
                if data_lst:
                    tbl_item.append({"data": (eval(operation)(data_lst)) /
                                             1000000})
                else:
                    tbl_item.append({"data": None})
            elif cmd == "operation":
                operation = args[0]
                try:
                    nr1 = float(tbl_item[int(args[1])]["data"])
                    nr2 = float(tbl_item[int(args[2])]["data"])
                    if nr1 and nr2:
                        tbl_item.append({"data": eval(operation)(nr1, nr2)})
                    else:
                        tbl_item.append({"data": None})
                except (IndexError, ValueError, TypeError):
                    logging.error("No data for {0}".format(tbl_item[0]["data"]))
                    tbl_item.append({"data": None})
                    continue
            else:
                logging.error("Not supported command {0}. Skipping the table.".
                              format(cmd))
                return None
        tbl_lst.append(tbl_item)

    # Sort the table according to the relative change
    tbl_lst.sort(key=lambda rel: rel[-1]["data"], reverse=True)

    # Create the tables and write them to the files
    file_names = [
        "{0}_ndr_top{1}".format(table["output-file"], table["output-file-ext"]),
        "{0}_pdr_top{1}".format(table["output-file"], table["output-file-ext"]),
        "{0}_ndr_low{1}".format(table["output-file"], table["output-file-ext"]),
        "{0}_pdr_low{1}".format(table["output-file"], table["output-file-ext"])
    ]

    for file_name in file_names:
        logging.info("    Writing the file '{0}'".format(file_name))
        with open(file_name, "w") as file_handler:
            file_handler.write(",".join(header) + "\n")
            for item in tbl_lst:
                if isinstance(item[-1]["data"], float):
                    rel_change = round(item[-1]["data"], 1)
                else:
                    rel_change = item[-1]["data"]
                if "ndr_top" in file_name \
                        and "ndr" in item[0]["data"] \
                        and rel_change >= 10.0:
                    _write_line_to_file(file_handler, item)
                elif "pdr_top" in file_name \
                        and "pdr" in item[0]["data"] \
                        and rel_change >= 10.0:
                    _write_line_to_file(file_handler, item)
                elif "ndr_low" in file_name \
                        and "ndr" in item[0]["data"] \
                        and rel_change < 10.0:
                    _write_line_to_file(file_handler, item)
                elif "pdr_low" in file_name \
                        and "pdr" in item[0]["data"] \
                        and rel_change < 10.0:
                    _write_line_to_file(file_handler, item)

    logging.info("  Done.")


def _read_csv_template(file_name):
    """Read the template from a .csv file.

    :param file_name: Name / full path / relative path of the file to read.
    :type file_name: str
    :returns: Data from the template as list (lines) of lists (items on line).
    :rtype: list
    :raises: PresentationError if it is not possible to read the file.
    """

    try:
        with open(file_name, 'r') as csv_file:
            tmpl_data = list()
            for line in csv_file:
                tmpl_data.append(line[:-1].split(","))
        return tmpl_data
    except IOError as err:
        raise PresentationError(str(err), level="ERROR")


def table_performance_comparison(table, input_data):
    """Generate the table(s) with algorithm: table_performance_comparison
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    # Transform the data
    data = input_data.filter_data(table, continue_on_error=True)

    # Prepare the header of the tables
    try:
        header = ["Test case",
                  "{0} Throughput [Mpps]".format(table["reference"]["title"]),
                  "{0} stdev [Mpps]".format(table["reference"]["title"]),
                  "{0} Throughput [Mpps]".format(table["compare"]["title"]),
                  "{0} stdev [Mpps]".format(table["compare"]["title"]),
                  "Change [%]"]
        header_str = ",".join(header) + "\n"
    except (AttributeError, KeyError) as err:
        logging.error("The model is invalid, missing parameter: {0}".
                      format(err))
        return

    # Prepare data to the table:
    tbl_dict = dict()
    for job, builds in table["reference"]["data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].iteritems():
                if tbl_dict.get(tst_name, None) is None:
                    name = "{0}-{1}".format(tst_data["parent"].split("-")[0],
                                            "-".join(tst_data["name"].
                                                     split("-")[1:]))
                    tbl_dict[tst_name] = {"name": name,
                                          "ref-data": list(),
                                          "cmp-data": list()}
                try:
                    tbl_dict[tst_name]["ref-data"].\
                        append(tst_data["throughput"]["value"])
                except TypeError:
                    pass  # No data in output.xml for this test

    for job, builds in table["compare"]["data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].iteritems():
                try:
                    tbl_dict[tst_name]["cmp-data"].\
                        append(tst_data["throughput"]["value"])
                except KeyError:
                    pass
                except TypeError:
                    tbl_dict.pop(tst_name, None)

    tbl_lst = list()
    for tst_name in tbl_dict.keys():
        item = [tbl_dict[tst_name]["name"], ]
        if tbl_dict[tst_name]["ref-data"]:
            data_t = remove_outliers(tbl_dict[tst_name]["ref-data"],
                                     table["outlier-const"])
            item.append(round(mean(data_t) / 1000000, 2))
            item.append(round(stdev(data_t) / 1000000, 2))
        else:
            item.extend([None, None])
        if tbl_dict[tst_name]["cmp-data"]:
            data_t = remove_outliers(tbl_dict[tst_name]["cmp-data"],
                                     table["outlier-const"])
            item.append(round(mean(data_t) / 1000000, 2))
            item.append(round(stdev(data_t) / 1000000, 2))
        else:
            item.extend([None, None])
        if item[1] is not None and item[3] is not None:
            item.append(int(relative_change(float(item[1]), float(item[3]))))
        if len(item) == 6:
            tbl_lst.append(item)

    # Sort the table according to the relative change
    tbl_lst.sort(key=lambda rel: rel[-1], reverse=True)

    # Generate tables:
    # All tests in csv:
    tbl_names = ["{0}-ndr-1t1c-full{1}".format(table["output-file"],
                                               table["output-file-ext"]),
                 "{0}-ndr-2t2c-full{1}".format(table["output-file"],
                                               table["output-file-ext"]),
                 "{0}-ndr-4t4c-full{1}".format(table["output-file"],
                                               table["output-file-ext"]),
                 "{0}-pdr-1t1c-full{1}".format(table["output-file"],
                                               table["output-file-ext"]),
                 "{0}-pdr-2t2c-full{1}".format(table["output-file"],
                                               table["output-file-ext"]),
                 "{0}-pdr-4t4c-full{1}".format(table["output-file"],
                                               table["output-file-ext"])
                 ]
    for file_name in tbl_names:
        logging.info("      Writing file: '{0}'".format(file_name))
        with open(file_name, "w") as file_handler:
            file_handler.write(header_str)
            for test in tbl_lst:
                if (file_name.split("-")[-3] in test[0] and    # NDR vs PDR
                        file_name.split("-")[-2] in test[0]):  # cores
                    test[0] = "-".join(test[0].split("-")[:-1])
                    file_handler.write(",".join([str(item) for item in test]) +
                                       "\n")

    # All tests in txt:
    tbl_names_txt = ["{0}-ndr-1t1c-full.txt".format(table["output-file"]),
                     "{0}-ndr-2t2c-full.txt".format(table["output-file"]),
                     "{0}-ndr-4t4c-full.txt".format(table["output-file"]),
                     "{0}-pdr-1t1c-full.txt".format(table["output-file"]),
                     "{0}-pdr-2t2c-full.txt".format(table["output-file"]),
                     "{0}-pdr-4t4c-full.txt".format(table["output-file"])
                     ]

    for i, txt_name in enumerate(tbl_names_txt):
        txt_table = None
        logging.info("      Writing file: '{0}'".format(txt_name))
        with open(tbl_names[i], 'rb') as csv_file:
            csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
            for row in csv_content:
                if txt_table is None:
                    txt_table = prettytable.PrettyTable(row)
                else:
                    txt_table.add_row(row)
            txt_table.align["Test case"] = "l"
        with open(txt_name, "w") as txt_file:
            txt_file.write(str(txt_table))

    # Selected tests in csv:
    input_file = "{0}-ndr-1t1c-full{1}".format(table["output-file"],
                                               table["output-file-ext"])
    with open(input_file, "r") as in_file:
        lines = list()
        for line in in_file:
            lines.append(line)

    output_file = "{0}-ndr-1t1c-top{1}".format(table["output-file"],
                                               table["output-file-ext"])
    logging.info("      Writing file: '{0}'".format(output_file))
    with open(output_file, "w") as out_file:
        out_file.write(header_str)
        for i, line in enumerate(lines[1:]):
            if i == table["nr-of-tests-shown"]:
                break
            out_file.write(line)

    output_file = "{0}-ndr-1t1c-bottom{1}".format(table["output-file"],
                                                  table["output-file-ext"])
    logging.info("      Writing file: '{0}'".format(output_file))
    with open(output_file, "w") as out_file:
        out_file.write(header_str)
        for i, line in enumerate(lines[-1:0:-1]):
            if i == table["nr-of-tests-shown"]:
                break
            out_file.write(line)

    input_file = "{0}-pdr-1t1c-full{1}".format(table["output-file"],
                                               table["output-file-ext"])
    with open(input_file, "r") as in_file:
        lines = list()
        for line in in_file:
            lines.append(line)

    output_file = "{0}-pdr-1t1c-top{1}".format(table["output-file"],
                                               table["output-file-ext"])
    logging.info("      Writing file: '{0}'".format(output_file))
    with open(output_file, "w") as out_file:
        out_file.write(header_str)
        for i, line in enumerate(lines[1:]):
            if i == table["nr-of-tests-shown"]:
                break
            out_file.write(line)

    output_file = "{0}-pdr-1t1c-bottom{1}".format(table["output-file"],
                                                  table["output-file-ext"])
    logging.info("      Writing file: '{0}'".format(output_file))
    with open(output_file, "w") as out_file:
        out_file.write(header_str)
        for i, line in enumerate(lines[-1:0:-1]):
            if i == table["nr-of-tests-shown"]:
                break
            out_file.write(line)


def table_performance_comparison_mrr(table, input_data):
    """Generate the table(s) with algorithm: table_performance_comparison_mrr
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    # Transform the data
    data = input_data.filter_data(table, continue_on_error=True)

    # Prepare the header of the tables
    try:
        header = ["Test case",
                  "{0} Throughput [Mpps]".format(table["reference"]["title"]),
                  "{0} stdev [Mpps]".format(table["reference"]["title"]),
                  "{0} Throughput [Mpps]".format(table["compare"]["title"]),
                  "{0} stdev [Mpps]".format(table["compare"]["title"]),
                  "Change [%]"]
        header_str = ",".join(header) + "\n"
    except (AttributeError, KeyError) as err:
        logging.error("The model is invalid, missing parameter: {0}".
                      format(err))
        return

    # Prepare data to the table:
    tbl_dict = dict()
    for job, builds in table["reference"]["data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].iteritems():
                if tbl_dict.get(tst_name, None) is None:
                    name = "{0}-{1}".format(tst_data["parent"].split("-")[0],
                                            "-".join(tst_data["name"].
                                                     split("-")[1:]))
                    tbl_dict[tst_name] = {"name": name,
                                          "ref-data": list(),
                                          "cmp-data": list()}
                try:
                    tbl_dict[tst_name]["ref-data"].\
                        append(tst_data["result"]["throughput"])
                except TypeError:
                    pass  # No data in output.xml for this test

    for job, builds in table["compare"]["data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].iteritems():
                try:
                    tbl_dict[tst_name]["cmp-data"].\
                        append(tst_data["result"]["throughput"])
                except KeyError:
                    pass
                except TypeError:
                    tbl_dict.pop(tst_name, None)

    tbl_lst = list()
    for tst_name in tbl_dict.keys():
        item = [tbl_dict[tst_name]["name"], ]
        if tbl_dict[tst_name]["ref-data"]:
            data_t = remove_outliers(tbl_dict[tst_name]["ref-data"],
                                     table["outlier-const"])
            item.append(round(mean(data_t) / 1000000, 2))
            item.append(round(stdev(data_t) / 1000000, 2))
        else:
            item.extend([None, None])
        if tbl_dict[tst_name]["cmp-data"]:
            data_t = remove_outliers(tbl_dict[tst_name]["cmp-data"],
                                     table["outlier-const"])
            item.append(round(mean(data_t) / 1000000, 2))
            item.append(round(stdev(data_t) / 1000000, 2))
        else:
            item.extend([None, None])
        if item[1] is not None and item[3] is not None and item[1] != 0:
            item.append(int(relative_change(float(item[1]), float(item[3]))))
        if len(item) == 6:
            tbl_lst.append(item)

    # Sort the table according to the relative change
    tbl_lst.sort(key=lambda rel: rel[-1], reverse=True)

    # Generate tables:
    # All tests in csv:
    tbl_names = ["{0}-1t1c-full{1}".format(table["output-file"],
                                           table["output-file-ext"]),
                 "{0}-2t2c-full{1}".format(table["output-file"],
                                           table["output-file-ext"]),
                 "{0}-4t4c-full{1}".format(table["output-file"],
                                           table["output-file-ext"])
                 ]
    for file_name in tbl_names:
        logging.info("      Writing file: '{0}'".format(file_name))
        with open(file_name, "w") as file_handler:
            file_handler.write(header_str)
            for test in tbl_lst:
                if file_name.split("-")[-2] in test[0]:  # cores
                    test[0] = "-".join(test[0].split("-")[:-1])
                    file_handler.write(",".join([str(item) for item in test]) +
                                       "\n")

    # All tests in txt:
    tbl_names_txt = ["{0}-1t1c-full.txt".format(table["output-file"]),
                     "{0}-2t2c-full.txt".format(table["output-file"]),
                     "{0}-4t4c-full.txt".format(table["output-file"])
                     ]

    for i, txt_name in enumerate(tbl_names_txt):
        txt_table = None
        logging.info("      Writing file: '{0}'".format(txt_name))
        with open(tbl_names[i], 'rb') as csv_file:
            csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
            for row in csv_content:
                if txt_table is None:
                    txt_table = prettytable.PrettyTable(row)
                else:
                    txt_table.add_row(row)
            txt_table.align["Test case"] = "l"
        with open(txt_name, "w") as txt_file:
            txt_file.write(str(txt_table))


def table_performance_trending_dashboard(table, input_data):
    """Generate the table(s) with algorithm: table_performance_comparison
    specified in the specification file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    # Transform the data
    data = input_data.filter_data(table, continue_on_error=True)

    # Prepare the header of the tables
    header = ["Test Case",
              "Throughput Trend [Mpps]",
              "Trend Compliance",
              "Top Anomaly [Mpps]",
              "Change [%]",
              "Outliers [Number]"
              ]
    header_str = ",".join(header) + "\n"

    # Prepare data to the table:
    tbl_dict = dict()
    for job, builds in table["data"].items():
        for build in builds:
            for tst_name, tst_data in data[job][str(build)].iteritems():
                if tbl_dict.get(tst_name, None) is None:
                    name = "{0}-{1}".format(tst_data["parent"].split("-")[0],
                                            "-".join(tst_data["name"].
                                                     split("-")[1:]))
                    tbl_dict[tst_name] = {"name": name,
                                          "data": dict()}
                try:
                    tbl_dict[tst_name]["data"][str(build)] =  \
                        tst_data["result"]["throughput"]
                except (TypeError, KeyError):
                    pass  # No data in output.xml for this test

    tbl_lst = list()
    for tst_name in tbl_dict.keys():
        if len(tbl_dict[tst_name]["data"]) > 2:

            pd_data = pd.Series(tbl_dict[tst_name]["data"])
            win_size = pd_data.size \
                if pd_data.size < table["window"] else table["window"]
            # Test name:
            name = tbl_dict[tst_name]["name"]

            median = pd_data.rolling(window=win_size, min_periods=2).median()
            trimmed_data, _ = find_outliers(pd_data, outlier_const=1.5)
            stdev_t = pd_data.rolling(window=win_size, min_periods=2).std()

            rel_change_lst = [None, ]
            classification_lst = [None, ]
            median_lst = [None, ]
            sample_lst = [None, ]
            first = True
            for build_nr, value in pd_data.iteritems():
                if first:
                    first = False
                    continue
                # Relative changes list:
                if not isnan(value) \
                        and not isnan(median[build_nr]) \
                        and median[build_nr] != 0:
                    rel_change_lst.append(round(
                        relative_change(float(median[build_nr]), float(value)),
                        2))
                else:
                    rel_change_lst.append(None)

                # Classification list:
                if isnan(trimmed_data[build_nr]) \
                        or isnan(median[build_nr]) \
                        or isnan(stdev_t[build_nr]) \
                        or isnan(value):
                    classification_lst.append("outlier")
                elif value < (median[build_nr] - 3 * stdev_t[build_nr]):
                    classification_lst.append("regression")
                elif value > (median[build_nr] + 3 * stdev_t[build_nr]):
                    classification_lst.append("progression")
                else:
                    classification_lst.append("normal")
                sample_lst.append(value)
                median_lst.append(median[build_nr])

            last_idx = len(classification_lst) - 1
            first_idx = last_idx - int(table["evaluated-window"])
            if first_idx < 0:
                first_idx = 0

            nr_outliers = 0
            consecutive_outliers = 0
            failure = False
            for item in classification_lst[first_idx:]:
                if item == "outlier":
                    nr_outliers += 1
                    consecutive_outliers += 1
                    if consecutive_outliers == 3:
                        failure = True
                else:
                    consecutive_outliers = 0

            if failure:
                classification = "failure"
            elif "regression" in classification_lst[first_idx:]:
                classification = "regression"
            elif "progression" in classification_lst[first_idx:]:
                classification = "progression"
            else:
                classification = "normal"

            if classification == "normal":
                index = len(classification_lst) - 1
            else:
                tmp_classification = "outlier" if classification == "failure" \
                    else classification
                for idx in range(first_idx, len(classification_lst)):
                    if classification_lst[idx] == tmp_classification:
                        index = idx
                        break
                for idx in range(index+1, len(classification_lst)):
                    if classification_lst[idx] == tmp_classification:
                        if rel_change_lst[idx] > rel_change_lst[index]:
                            index = idx

            # if "regression" in classification_lst[first_idx:]:
            #     classification = "regression"
            # elif "outlier" in classification_lst[first_idx:]:
            #     classification = "outlier"
            # elif "progression" in classification_lst[first_idx:]:
            #     classification = "progression"
            # elif "normal" in classification_lst[first_idx:]:
            #     classification = "normal"
            # else:
            #     classification = None
            #
            # nr_outliers = 0
            # consecutive_outliers = 0
            # failure = False
            # for item in classification_lst[first_idx:]:
            #     if item == "outlier":
            #         nr_outliers += 1
            #         consecutive_outliers += 1
            #         if consecutive_outliers == 3:
            #             failure = True
            #     else:
            #         consecutive_outliers = 0
            #
            # idx = len(classification_lst) - 1
            # while idx:
            #     if classification_lst[idx] == classification:
            #         break
            #     idx -= 1
            #
            # if failure:
            #     classification = "failure"
            # elif classification == "outlier":
            #     classification = "normal"

            trend = round(float(median_lst[-1]) / 1000000, 2) \
                if not isnan(median_lst[-1]) else ''
            sample = round(float(sample_lst[index]) / 1000000, 2) \
                if not isnan(sample_lst[index]) else ''
            rel_change = rel_change_lst[index] \
                if rel_change_lst[index] is not None else ''
            tbl_lst.append([name,
                            trend,
                            classification,
                            '-' if classification == "normal" else sample,
                            '-' if classification == "normal" else rel_change,
                            nr_outliers])

    # Sort the table according to the classification
    tbl_sorted = list()
    for classification in ("failure", "regression", "progression", "normal"):
        tbl_tmp = [item for item in tbl_lst if item[2] == classification]
        tbl_tmp.sort(key=lambda rel: rel[0])
        tbl_sorted.extend(tbl_tmp)

    file_name = "{0}{1}".format(table["output-file"], table["output-file-ext"])

    logging.info("      Writing file: '{0}'".format(file_name))
    with open(file_name, "w") as file_handler:
        file_handler.write(header_str)
        for test in tbl_sorted:
            file_handler.write(",".join([str(item) for item in test]) + '\n')

    txt_file_name = "{0}.txt".format(table["output-file"])
    txt_table = None
    logging.info("      Writing file: '{0}'".format(txt_file_name))
    with open(file_name, 'rb') as csv_file:
        csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
        for row in csv_content:
            if txt_table is None:
                txt_table = prettytable.PrettyTable(row)
            else:
                txt_table.add_row(row)
        txt_table.align["Test case"] = "l"
    with open(txt_file_name, "w") as txt_file:
        txt_file.write(str(txt_table))


def table_performance_trending_dashboard_html(table, input_data):
    """Generate the table(s) with algorithm:
    table_performance_trending_dashboard_html specified in the specification
    file.

    :param table: Table to generate.
    :param input_data: Data to process.
    :type table: pandas.Series
    :type input_data: InputData
    """

    logging.info("  Generating the table {0} ...".
                 format(table.get("title", "")))

    try:
        with open(table["input-file"], 'rb') as csv_file:
            csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
            csv_lst = [item for item in csv_content]
    except KeyError:
        logging.warning("The input file is not defined.")
        return
    except csv.Error as err:
        logging.warning("Not possible to process the file '{0}'.\n{1}".
                        format(table["input-file"], err))
        return

    # Table:
    dashboard = ET.Element("table", attrib=dict(width="100%", border='0'))

    # Table header:
    tr = ET.SubElement(dashboard, "tr", attrib=dict(bgcolor="#7eade7"))
    for idx, item in enumerate(csv_lst[0]):
        alignment = "left" if idx == 0 else "center"
        th = ET.SubElement(tr, "th", attrib=dict(align=alignment))
        th.text = item

    # Rows:
    for r_idx, row in enumerate(csv_lst[1:]):
        background = "#D4E4F7" if r_idx % 2 else "white"
        tr = ET.SubElement(dashboard, "tr", attrib=dict(bgcolor=background))

        # Columns:
        for c_idx, item in enumerate(row):
            alignment = "left" if c_idx == 0 else "center"
            td = ET.SubElement(tr, "td", attrib=dict(align=alignment))
            # Name:
            url = "../trending/"
            file_name = ""
            anchor = "#"
            feature = ""
            if c_idx == 0:
                if "memif" in item:
                    file_name = "container_memif.html"

                elif "vhost" in item:
                    if "l2xcbase" in item or "l2bdbasemaclrn" in item:
                        file_name = "vm_vhost_l2.html"
                    elif "ip4base" in item:
                        file_name = "vm_vhost_ip4.html"

                elif "ipsec" in item:
                    file_name = "ipsec.html"

                elif "ethip4lispip" in item or "ethip4vxlan" in item:
                    file_name = "ip4_tunnels.html"

                elif "ip4base" in item or "ip4scale" in item:
                    file_name = "ip4.html"
                    if "iacl" in item or "snat" in item or "cop" in item:
                        feature = "-features"

                elif "ip6base" in item or "ip6scale" in item:
                    file_name = "ip6.html"

                elif "l2xcbase" in item or "l2xcscale" in item \
                        or "l2bdbasemaclrn" in item or "l2bdscale" in item \
                        or "l2dbbasemaclrn" in item or "l2dbscale" in item:
                    file_name = "l2.html"
                    if "iacl" in item:
                        feature = "-features"

                if "x520" in item:
                    anchor += "x520-"
                elif "x710" in item:
                    anchor += "x710-"
                elif "xl710" in item:
                    anchor += "xl710-"

                if "64b" in item:
                    anchor += "64b-"
                elif "78b" in item:
                    anchor += "78b"
                elif "imix" in item:
                    anchor += "imix-"
                elif "9000b" in item:
                    anchor += "9000b-"
                elif "1518" in item:
                    anchor += "1518b-"

                if "1t1c" in item:
                    anchor += "1t1c"
                elif "2t2c" in item:
                    anchor += "2t2c"
                elif "4t4c" in item:
                    anchor += "4t4c"

                url = url + file_name + anchor + feature

                ref = ET.SubElement(td, "a", attrib=dict(href=url))
                ref.text = item

            if c_idx == 2:
                if item == "regression":
                    td.set("bgcolor", "#eca1a6")
                elif item == "failure":
                    td.set("bgcolor", "#d6cbd3")
                elif item == "progression":
                    td.set("bgcolor", "#bdcebe")
            if c_idx > 0:
                td.text = item

    try:
        with open(table["output-file"], 'w') as html_file:
            logging.info("      Writing file: '{0}'".
                         format(table["output-file"]))
            html_file.write(".. raw:: html\n\n\t")
            html_file.write(ET.tostring(dashboard))
            html_file.write("\n\t<p><br><br></p>\n")
    except KeyError:
        logging.warning("The output file is not defined.")
        return
="p">[thread_index]; f_sess_id.thread_index = thread_index; fa_session_t *sess; pool_get_aligned (pw->fa_sessions_pool, sess, CLIB_CACHE_LINE_BYTES); f_sess_id.session_index = sess - pw->fa_sessions_pool; kv.key[0] = pkv->key[0]; kv.key[1] = pkv->key[1]; kv.key[2] = pkv->key[2]; kv.key[3] = pkv->key[3]; kv.key[4] = pkv->key[4]; kv.value = f_sess_id.as_u64; memcpy (sess, pkv, sizeof (pkv->key)); sess->last_active_time = now; sess->sw_if_index = sw_if_index; sess->tcp_flags_seen.as_u16 = 0; sess->thread_index = thread_index; sess->link_list_id = ~0; sess->link_prev_idx = ~0; sess->link_next_idx = ~0; ASSERT(am->fa_sessions_hash_is_initialized == 1); BV (clib_bihash_add_del) (&am->fa_sessions_hash, &kv, 1); acl_fa_conn_list_add_session(am, f_sess_id, now); vec_validate (pw->fa_session_adds_by_sw_if_index, sw_if_index); clib_mem_set_heap (oldheap); pw->fa_session_adds_by_sw_if_index[sw_if_index]++; clib_smp_atomic_add(&am->fa_session_total_adds, 1); return sess; } static int acl_fa_find_session (acl_main_t * am, u32 sw_if_index0, fa_5tuple_t * p5tuple, clib_bihash_kv_40_8_t * pvalue_sess) { return (BV (clib_bihash_search) (&am->fa_sessions_hash, &p5tuple->kv, pvalue_sess) == 0); } always_inline uword acl_fa_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame, int is_ip6, int is_input, int is_l2_path, u32 * l2_feat_next_node_index, vlib_node_registration_t * acl_fa_node) { u32 n_left_from, *from, *to_next; acl_fa_next_t next_index; u32 pkts_acl_checked = 0; u32 pkts_new_session = 0; u32 pkts_exist_session = 0; u32 pkts_acl_permit = 0; u32 pkts_restart_session_timer = 0; u32 trace_bitmap = 0; acl_main_t *am = &acl_main; fa_5tuple_t fa_5tuple, kv_sess; clib_bihash_kv_40_8_t value_sess; vlib_node_runtime_t *error_node; u64 now = clib_cpu_time_now (); uword thread_index = os_get_thread_index (); from = vlib_frame_vector_args (frame); n_left_from = frame->n_vectors; next_index = node->cached_next_index; error_node = vlib_node_get_runtime (vm, acl_fa_node->index); while (n_left_from > 0) { u32 n_left_to_next; vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); while (n_left_from > 0 && n_left_to_next > 0) { u32 bi0; vlib_buffer_t *b0; u32 next0 = 0; u8 action = 0; u32 sw_if_index0; int acl_check_needed = 1; u32 match_acl_in_index = ~0; u32 match_rule_index = ~0; u8 error0 = 0; u32 valid_new_sess; /* speculatively enqueue b0 to the current next frame */ bi0 = from[0]; to_next[0] = bi0; from += 1; to_next += 1; n_left_from -= 1; n_left_to_next -= 1; b0 = vlib_get_buffer (vm, bi0); if (is_input) sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_RX]; else sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_TX]; /* * Extract the L3/L4 matching info into a 5-tuple structure, * then create a session key whose layout is independent on forward or reverse * direction of the packet. */ acl_fill_5tuple (am, b0, is_ip6, is_input, is_l2_path, &fa_5tuple); fa_5tuple.l4.lsb_of_sw_if_index = sw_if_index0 & 0xffff; valid_new_sess = acl_make_5tuple_session_key (am, is_input, is_ip6, sw_if_index0, &fa_5tuple, &kv_sess); fa_5tuple.pkt.sw_if_index = sw_if_index0; fa_5tuple.pkt.is_ip6 = is_ip6; fa_5tuple.pkt.is_input = is_input; fa_5tuple.pkt.mask_type_index_lsb = ~0; #ifdef FA_NODE_VERBOSE_DEBUG clib_warning ("ACL_FA_NODE_DBG: session 5-tuple %016llx %016llx %016llx %016llx %016llx : %016llx", kv_sess.kv.key[0], kv_sess.kv.key[1], kv_sess.kv.key[2], kv_sess.kv.key[3], kv_sess.kv.key[4], kv_sess.kv.value); clib_warning ("ACL_FA_NODE_DBG: packet 5-tuple %016llx %016llx %016llx %016llx %016llx : %016llx", fa_5tuple.kv.key[0], fa_5tuple.kv.key[1], fa_5tuple.kv.key[2], fa_5tuple.kv.key[3], fa_5tuple.kv.key[4], fa_5tuple.kv.value); #endif /* Try to match an existing session first */ if (acl_fa_ifc_has_sessions (am, sw_if_index0)) { if (acl_fa_find_session (am, sw_if_index0, &kv_sess, &value_sess)) { trace_bitmap |= 0x80000000; error0 = ACL_FA_ERROR_ACL_EXIST_SESSION; fa_full_session_id_t f_sess_id; f_sess_id.as_u64 = value_sess.value; ASSERT(f_sess_id.thread_index < vec_len(vlib_mains)); fa_session_t *sess = get_session_ptr(am, f_sess_id.thread_index, f_sess_id.session_index); int old_timeout_type = fa_session_get_timeout_type (am, sess); action = acl_fa_track_session (am, is_input, sw_if_index0, now, sess, &fa_5tuple); /* expose the session id to the tracer */ match_rule_index = f_sess_id.session_index; int new_timeout_type = fa_session_get_timeout_type (am, sess); acl_check_needed = 0; pkts_exist_session += 1; /* Tracking might have changed the session timeout type, e.g. from transient to established */ if (PREDICT_FALSE (old_timeout_type != new_timeout_type)) { acl_fa_restart_timer_for_session (am, now, f_sess_id); pkts_restart_session_timer++; trace_bitmap |= 0x00010000 + ((0xff & old_timeout_type) << 8) + (0xff & new_timeout_type); } /* * I estimate the likelihood to be very low - the VPP needs * to have >64K interfaces to start with and then on * exactly 64K indices apart needs to be exactly the same * 5-tuple... Anyway, since this probability is nonzero - * print an error and drop the unlucky packet. * If this shows up in real world, we would need to bump * the hash key length. */ if (PREDICT_FALSE(sess->sw_if_index != sw_if_index0)) { clib_warning("BUG: session LSB16(sw_if_index) and 5-tuple collision!"); acl_check_needed = 0; action = 0; } } } if (acl_check_needed) { action = multi_acl_match_5tuple (sw_if_index0, &fa_5tuple, is_l2_path, is_ip6, is_input, &match_acl_in_index, &match_rule_index, &trace_bitmap); error0 = action; if (1 == action) pkts_acl_permit += 1; if (2 == action) { if (!acl_fa_can_add_session (am, is_input, sw_if_index0)) acl_fa_try_recycle_session (am, is_input, thread_index, sw_if_index0); if (acl_fa_can_add_session (am, is_input, sw_if_index0)) { if (PREDICT_TRUE (valid_new_sess)) { fa_session_t *sess = acl_fa_add_session (am, is_input, sw_if_index0, now, &kv_sess); acl_fa_track_session (am, is_input, sw_if_index0, now, sess, &fa_5tuple); pkts_new_session += 1; } else { /* * ICMP packets with non-icmp_valid_new type will be * forwared without being dropped. */ action = 1; pkts_acl_permit += 1; } } else { action = 0; error0 = ACL_FA_ERROR_ACL_TOO_MANY_SESSIONS; } } } if (action > 0) { if (is_l2_path) next0 = vnet_l2_feature_next (b0, l2_feat_next_node_index, 0); else vnet_feature_next (sw_if_index0, &next0, b0); } if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE) && (b0->flags & VLIB_BUFFER_IS_TRACED))) { acl_fa_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t)); t->sw_if_index = sw_if_index0; t->next_index = next0; t->match_acl_in_index = match_acl_in_index; t->match_rule_index = match_rule_index; t->packet_info[0] = fa_5tuple.kv.key[0]; t->packet_info[1] = fa_5tuple.kv.key[1]; t->packet_info[2] = fa_5tuple.kv.key[2]; t->packet_info[3] = fa_5tuple.kv.key[3]; t->packet_info[4] = fa_5tuple.kv.key[4]; t->packet_info[5] = fa_5tuple.kv.value; t->action = action; t->trace_bitmap = trace_bitmap; } next0 = next0 < node->n_next_nodes ? next0 : 0; if (0 == next0) b0->error = error_node->errors[error0]; pkts_acl_checked += 1; /* verify speculative enqueue, maybe switch current next frame */ vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, n_left_to_next, bi0, next0); } vlib_put_next_frame (vm, node, next_index, n_left_to_next); } vlib_node_increment_counter (vm, acl_fa_node->index, ACL_FA_ERROR_ACL_CHECK, pkts_acl_checked); vlib_node_increment_counter (vm, acl_fa_node->index, ACL_FA_ERROR_ACL_PERMIT, pkts_acl_permit); vlib_node_increment_counter (vm, acl_fa_node->index, ACL_FA_ERROR_ACL_NEW_SESSION, pkts_new_session); vlib_node_increment_counter (vm, acl_fa_node->index, ACL_FA_ERROR_ACL_EXIST_SESSION, pkts_exist_session); vlib_node_increment_counter (vm, acl_fa_node->index, ACL_FA_ERROR_ACL_RESTART_SESSION_TIMER, pkts_restart_session_timer); return frame->n_vectors; } vlib_node_registration_t acl_in_l2_ip6_node; static uword acl_in_ip6_l2_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { acl_main_t *am = &acl_main; return acl_fa_node_fn (vm, node, frame, 1, 1, 1, am->fa_acl_in_ip6_l2_node_feat_next_node_index, &acl_in_l2_ip6_node); } vlib_node_registration_t acl_in_l2_ip4_node; static uword acl_in_ip4_l2_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { acl_main_t *am = &acl_main; return acl_fa_node_fn (vm, node, frame, 0, 1, 1, am->fa_acl_in_ip4_l2_node_feat_next_node_index, &acl_in_l2_ip4_node); } vlib_node_registration_t acl_out_l2_ip6_node; static uword acl_out_ip6_l2_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { acl_main_t *am = &acl_main; return acl_fa_node_fn (vm, node, frame, 1, 0, 1, am->fa_acl_out_ip6_l2_node_feat_next_node_index, &acl_out_l2_ip6_node); } vlib_node_registration_t acl_out_l2_ip4_node; static uword acl_out_ip4_l2_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { acl_main_t *am = &acl_main; return acl_fa_node_fn (vm, node, frame, 0, 0, 1, am->fa_acl_out_ip4_l2_node_feat_next_node_index, &acl_out_l2_ip4_node); } /**** L3 processing path nodes ****/ vlib_node_registration_t acl_in_fa_ip6_node; static uword acl_in_ip6_fa_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { return acl_fa_node_fn (vm, node, frame, 1, 1, 0, 0, &acl_in_fa_ip6_node); } vlib_node_registration_t acl_in_fa_ip4_node; static uword acl_in_ip4_fa_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { return acl_fa_node_fn (vm, node, frame, 0, 1, 0, 0, &acl_in_fa_ip4_node); } vlib_node_registration_t acl_out_fa_ip6_node; static uword acl_out_ip6_fa_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { return acl_fa_node_fn (vm, node, frame, 1, 0, 0, 0, &acl_out_fa_ip6_node); } vlib_node_registration_t acl_out_fa_ip4_node; static uword acl_out_ip4_fa_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { return acl_fa_node_fn (vm, node, frame, 0, 0, 0, 0, &acl_out_fa_ip4_node); } /* * This process ensures the connection cleanup happens every so often * even in absence of traffic, as well as provides general orchestration * for requests like connection deletion on a given sw_if_index. */ /* *INDENT-OFF* */ #define foreach_acl_fa_cleaner_error \ _(UNKNOWN_EVENT, "unknown event received") \ /* end of errors */ typedef enum { #define _(sym,str) ACL_FA_CLEANER_ERROR_##sym, foreach_acl_fa_cleaner_error #undef _ ACL_FA_CLEANER_N_ERROR, } acl_fa_cleaner_error_t; static char *acl_fa_cleaner_error_strings[] = { #define _(sym,string) string, foreach_acl_fa_cleaner_error #undef _ }; /* *INDENT-ON* */ static vlib_node_registration_t acl_fa_session_cleaner_process_node; static vlib_node_registration_t acl_fa_worker_session_cleaner_process_node; /* * Per-worker thread interrupt-driven cleaner thread * to clean idle connections if there are no packets */ static uword acl_fa_worker_conn_cleaner_process(vlib_main_t * vm, vlib_node_runtime_t * rt, vlib_frame_t * f) { acl_main_t *am = &acl_main; u64 now = clib_cpu_time_now (); u16 thread_index = os_get_thread_index (); acl_fa_per_worker_data_t *pw = &am->per_worker_data[thread_index]; int num_expired; #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("\nacl_fa_worker_conn_cleaner: thread index %d now %lu\n\n", thread_index, now); #endif /* allow another interrupt to be queued */ pw->interrupt_is_pending = 0; if (pw->clear_in_process) { if (0 == pw->swipe_end_time) { /* * Someone has just set the flag to start clearing. * we do this by combing through the connections up to a "time T" * which is now, and requeueing everything except the expired * connections and those matching the interface(s) being cleared. */ /* * first filter the sw_if_index bitmap that they want from us, by * a bitmap of sw_if_index for which we actually have connections. */ if ((pw->pending_clear_sw_if_index_bitmap == 0) || (pw->serviced_sw_if_index_bitmap == 0)) { #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("WORKER-CLEAR: someone tried to call clear, but one of the bitmaps are empty"); #endif clib_bitmap_zero(pw->pending_clear_sw_if_index_bitmap); } else { #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("WORKER-CLEAR: (before and) swiping sw-if-index bitmap: %U, my serviced bitmap %U", format_bitmap_hex, pw->pending_clear_sw_if_index_bitmap, format_bitmap_hex, pw->serviced_sw_if_index_bitmap); #endif pw->pending_clear_sw_if_index_bitmap = clib_bitmap_and(pw->pending_clear_sw_if_index_bitmap, pw->serviced_sw_if_index_bitmap); } if (clib_bitmap_is_zero(pw->pending_clear_sw_if_index_bitmap)) { /* if the cross-section is a zero vector, no need to do anything. */ #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("WORKER: clearing done - nothing to do"); #endif pw->clear_in_process = 0; } else { #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("WORKER-CLEAR: swiping sw-if-index bitmap: %U, my serviced bitmap %U", format_bitmap_hex, pw->pending_clear_sw_if_index_bitmap, format_bitmap_hex, pw->serviced_sw_if_index_bitmap); #endif /* swipe through the connection lists until enqueue timestamps become above "now" */ pw->swipe_end_time = now; } } } num_expired = acl_fa_check_idle_sessions(am, thread_index, now); // clib_warning("WORKER-CLEAR: checked %d sessions (clear_in_progress: %d)", num_expired, pw->clear_in_process); if (pw->clear_in_process) { if (0 == num_expired) { /* we were clearing but we could not process any more connections. time to stop. */ clib_bitmap_zero(pw->pending_clear_sw_if_index_bitmap); pw->clear_in_process = 0; #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("WORKER: clearing done, all done"); #endif } else { #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("WORKER-CLEAR: more work to do, raising interrupt"); #endif /* should continue clearing.. So could they please sent an interrupt again? */ pw->interrupt_is_needed = 1; } } else { if (num_expired >= am->fa_max_deleted_sessions_per_interval) { /* there was too much work, we should get an interrupt ASAP */ pw->interrupt_is_needed = 1; pw->interrupt_is_unwanted = 0; } else if (num_expired <= am->fa_min_deleted_sessions_per_interval) { /* signal that they should trigger us less */ pw->interrupt_is_needed = 0; pw->interrupt_is_unwanted = 1; } else { /* the current rate of interrupts is ok */ pw->interrupt_is_needed = 0; pw->interrupt_is_unwanted = 0; } } pw->interrupt_generation = am->fa_interrupt_generation; return 0; } static void send_one_worker_interrupt (vlib_main_t * vm, acl_main_t *am, int thread_index) { acl_fa_per_worker_data_t *pw = &am->per_worker_data[thread_index]; if (!pw->interrupt_is_pending) { pw->interrupt_is_pending = 1; vlib_node_set_interrupt_pending (vlib_mains[thread_index], acl_fa_worker_session_cleaner_process_node.index); /* if the interrupt was requested, mark that done. */ /* pw->interrupt_is_needed = 0; */ } } static void send_interrupts_to_workers (vlib_main_t * vm, acl_main_t *am) { int i; /* Can't use vec_len(am->per_worker_data) since the threads might not have come up yet; */ int n_threads = vec_len(vlib_mains); for (i = n_threads > 1 ? 1 : 0; i < n_threads; i++) { send_one_worker_interrupt(vm, am, i); } } /* centralized process to drive per-worker cleaners */ static uword acl_fa_session_cleaner_process (vlib_main_t * vm, vlib_node_runtime_t * rt, vlib_frame_t * f) { acl_main_t *am = &acl_main; u64 now; f64 cpu_cps = vm->clib_time.clocks_per_second; u64 next_expire; /* We should check if there are connections to clean up - at least twice a second */ u64 max_timer_wait_interval = cpu_cps / 2; uword event_type, *event_data = 0; acl_fa_per_worker_data_t *pw0; am->fa_current_cleaner_timer_wait_interval = max_timer_wait_interval; am->fa_cleaner_node_index = acl_fa_session_cleaner_process_node.index; am->fa_interrupt_generation = 1; while (1) { now = clib_cpu_time_now (); next_expire = now + am->fa_current_cleaner_timer_wait_interval; int has_pending_conns = 0; u16 ti; u8 tt; /* * walk over all per-thread list heads of different timeouts, * and see if there are any connections pending. * If there aren't - we do not need to wake up until the * worker code signals that it has added a connection. * * Also, while we are at it, calculate the earliest we need to wake up. */ for(ti = 0; ti < vec_len(vlib_mains); ti++) { if (ti >= vec_len(am->per_worker_data)) { continue; } acl_fa_per_worker_data_t *pw = &am->per_worker_data[ti]; for(tt = 0; tt < vec_len(pw->fa_conn_list_head); tt++) { u64 head_expiry = acl_fa_get_list_head_expiry_time(am, pw, now, ti, tt); if ((head_expiry < next_expire) && !pw->interrupt_is_pending) { #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("Head expiry: %lu, now: %lu, next_expire: %lu (worker: %d, tt: %d)", head_expiry, now, next_expire, ti, tt); #endif next_expire = head_expiry; } if (~0 != pw->fa_conn_list_head[tt]) { has_pending_conns = 1; } } } /* If no pending connections and no ACL applied then no point in timing out */ if (!has_pending_conns && (0 == am->fa_total_enabled_count)) { am->fa_cleaner_cnt_wait_without_timeout++; (void) vlib_process_wait_for_event (vm); event_type = vlib_process_get_events (vm, &event_data); } else { f64 timeout = ((i64) next_expire - (i64) now) / cpu_cps; if (timeout <= 0) { /* skip waiting altogether */ event_type = ~0; } else { am->fa_cleaner_cnt_wait_with_timeout++; (void) vlib_process_wait_for_event_or_clock (vm, timeout); event_type = vlib_process_get_events (vm, &event_data); } } switch (event_type) { case ~0: /* nothing to do */ break; case ACL_FA_CLEANER_RESCHEDULE: /* Nothing to do. */ break; case ACL_FA_CLEANER_DELETE_BY_SW_IF_INDEX: { uword *clear_sw_if_index_bitmap = 0; uword *sw_if_index0; int clear_all = 0; #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("ACL_FA_CLEANER_DELETE_BY_SW_IF_INDEX received"); #endif vec_foreach (sw_if_index0, event_data) { am->fa_cleaner_cnt_delete_by_sw_index++; #ifdef FA_NODE_VERBOSE_DEBUG clib_warning ("ACL_FA_NODE_CLEAN: ACL_FA_CLEANER_DELETE_BY_SW_IF_INDEX: %d", *sw_if_index0); #endif if (*sw_if_index0 == ~0) { clear_all = 1; } else { if (!pool_is_free_index (am->vnet_main->interface_main.sw_interfaces, *sw_if_index0)) { clear_sw_if_index_bitmap = clib_bitmap_set(clear_sw_if_index_bitmap, *sw_if_index0, 1); } } } #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("ACL_FA_CLEANER_DELETE_BY_SW_IF_INDEX bitmap: %U", format_bitmap_hex, clear_sw_if_index_bitmap); #endif vec_foreach(pw0, am->per_worker_data) { CLIB_MEMORY_BARRIER (); while (pw0->clear_in_process) { CLIB_MEMORY_BARRIER (); #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("ACL_FA_NODE_CLEAN: waiting previous cleaning cycle to finish on %d...", pw0 - am->per_worker_data); #endif vlib_process_suspend(vm, 0.0001); if (pw0->interrupt_is_needed) { send_one_worker_interrupt(vm, am, (pw0 - am->per_worker_data)); } } if (pw0->clear_in_process) { clib_warning("ERROR-BUG! Could not initiate cleaning on worker because another cleanup in progress"); } else { if (clear_all) { /* if we need to clear all, then just clear the interfaces that we are servicing */ pw0->pending_clear_sw_if_index_bitmap = clib_bitmap_dup(pw0->serviced_sw_if_index_bitmap); } else { pw0->pending_clear_sw_if_index_bitmap = clib_bitmap_dup(clear_sw_if_index_bitmap); } pw0->clear_in_process = 1; } } /* send some interrupts so they can start working */ send_interrupts_to_workers(vm, am); /* now wait till they all complete */ #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("CLEANER mains len: %d per-worker len: %d", vec_len(vlib_mains), vec_len(am->per_worker_data)); #endif vec_foreach(pw0, am->per_worker_data) { CLIB_MEMORY_BARRIER (); while (pw0->clear_in_process) { CLIB_MEMORY_BARRIER (); #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("ACL_FA_NODE_CLEAN: waiting for my cleaning cycle to finish on %d...", pw0 - am->per_worker_data); #endif vlib_process_suspend(vm, 0.0001); if (pw0->interrupt_is_needed) { send_one_worker_interrupt(vm, am, (pw0 - am->per_worker_data)); } } } #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("ACL_FA_NODE_CLEAN: cleaning done"); #endif clib_bitmap_free(clear_sw_if_index_bitmap); } break; default: #ifdef FA_NODE_VERBOSE_DEBUG clib_warning ("ACL plugin connection cleaner: unknown event %u", event_type); #endif vlib_node_increment_counter (vm, acl_fa_session_cleaner_process_node. index, ACL_FA_CLEANER_ERROR_UNKNOWN_EVENT, 1); am->fa_cleaner_cnt_unknown_event++; break; } send_interrupts_to_workers(vm, am); if (event_data) _vec_len (event_data) = 0; /* * If the interrupts were not processed yet, ensure we wait a bit, * but up to a point. */ int need_more_wait = 0; int max_wait_cycles = 100; do { need_more_wait = 0; vec_foreach(pw0, am->per_worker_data) { if (pw0->interrupt_generation != am->fa_interrupt_generation) { need_more_wait = 1; } } if (need_more_wait) { vlib_process_suspend(vm, 0.0001); } } while (need_more_wait && (--max_wait_cycles > 0)); int interrupts_needed = 0; int interrupts_unwanted = 0; vec_foreach(pw0, am->per_worker_data) { if (pw0->interrupt_is_needed) { interrupts_needed++; /* the per-worker value is reset when sending the interrupt */ } if (pw0->interrupt_is_unwanted) { interrupts_unwanted++; pw0->interrupt_is_unwanted = 0; } } if (interrupts_needed) { /* they need more interrupts, do less waiting around next time */ am->fa_current_cleaner_timer_wait_interval /= 2; /* never go into zero-wait either though - we need to give the space to others */ am->fa_current_cleaner_timer_wait_interval += 1; } else if (interrupts_unwanted) { /* slowly increase the amount of sleep up to a limit */ if (am->fa_current_cleaner_timer_wait_interval < max_timer_wait_interval) am->fa_current_cleaner_timer_wait_interval += cpu_cps * am->fa_cleaner_wait_time_increment; } am->fa_cleaner_cnt_event_cycles++; am->fa_interrupt_generation++; } /* NOT REACHED */ return 0; } void acl_fa_enable_disable (u32 sw_if_index, int is_input, int enable_disable) { acl_main_t *am = &acl_main; if (enable_disable) { acl_fa_verify_init_sessions(am); am->fa_total_enabled_count++; void *oldheap = clib_mem_set_heap (am->vlib_main->heap_base); vlib_process_signal_event (am->vlib_main, am->fa_cleaner_node_index, ACL_FA_CLEANER_RESCHEDULE, 0); clib_mem_set_heap (oldheap); } else { am->fa_total_enabled_count--; } if (is_input) { ASSERT(clib_bitmap_get(am->fa_in_acl_on_sw_if_index, sw_if_index) != enable_disable); void *oldheap = clib_mem_set_heap (am->vlib_main->heap_base); vnet_feature_enable_disable ("ip4-unicast", "acl-plugin-in-ip4-fa", sw_if_index, enable_disable, 0, 0); vnet_feature_enable_disable ("ip6-unicast", "acl-plugin-in-ip6-fa", sw_if_index, enable_disable, 0, 0); clib_mem_set_heap (oldheap); am->fa_in_acl_on_sw_if_index = clib_bitmap_set (am->fa_in_acl_on_sw_if_index, sw_if_index, enable_disable); } else { ASSERT(clib_bitmap_get(am->fa_out_acl_on_sw_if_index, sw_if_index) != enable_disable); void *oldheap = clib_mem_set_heap (am->vlib_main->heap_base); vnet_feature_enable_disable ("ip4-output", "acl-plugin-out-ip4-fa", sw_if_index, enable_disable, 0, 0); vnet_feature_enable_disable ("ip6-output", "acl-plugin-out-ip6-fa", sw_if_index, enable_disable, 0, 0); clib_mem_set_heap (oldheap); am->fa_out_acl_on_sw_if_index = clib_bitmap_set (am->fa_out_acl_on_sw_if_index, sw_if_index, enable_disable); } if ((!enable_disable) && (!acl_fa_ifc_has_in_acl (am, sw_if_index)) && (!acl_fa_ifc_has_out_acl (am, sw_if_index))) { #ifdef FA_NODE_VERBOSE_DEBUG clib_warning("ENABLE-DISABLE: clean the connections on interface %d", sw_if_index); #endif void *oldheap = clib_mem_set_heap (am->vlib_main->heap_base); vlib_process_signal_event (am->vlib_main, am->fa_cleaner_node_index, ACL_FA_CLEANER_DELETE_BY_SW_IF_INDEX, sw_if_index); clib_mem_set_heap (oldheap); } } void show_fa_sessions_hash(vlib_main_t * vm, u32 verbose) { acl_main_t *am = &acl_main; if (am->fa_sessions_hash_is_initialized) { vlib_cli_output(vm, "\nSession lookup hash table:\n%U\n\n", BV (format_bihash), &am->fa_sessions_hash, verbose); } else { vlib_cli_output(vm, "\nSession lookup hash table is not allocated.\n\n"); } } /* *INDENT-OFF* */ VLIB_REGISTER_NODE (acl_fa_worker_session_cleaner_process_node, static) = { .function = acl_fa_worker_conn_cleaner_process, .name = "acl-plugin-fa-worker-cleaner-process", .type = VLIB_NODE_TYPE_INPUT, .state = VLIB_NODE_STATE_INTERRUPT, }; VLIB_REGISTER_NODE (acl_fa_session_cleaner_process_node, static) = { .function = acl_fa_session_cleaner_process, .type = VLIB_NODE_TYPE_PROCESS, .name = "acl-plugin-fa-cleaner-process", .n_errors = ARRAY_LEN (acl_fa_cleaner_error_strings), .error_strings = acl_fa_cleaner_error_strings, .n_next_nodes = 0, .next_nodes = {}, }; VLIB_REGISTER_NODE (acl_in_l2_ip6_node) = { .function = acl_in_ip6_l2_node_fn, .name = "acl-plugin-in-ip6-l2", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VLIB_REGISTER_NODE (acl_in_l2_ip4_node) = { .function = acl_in_ip4_l2_node_fn, .name = "acl-plugin-in-ip4-l2", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VLIB_REGISTER_NODE (acl_out_l2_ip6_node) = { .function = acl_out_ip6_l2_node_fn, .name = "acl-plugin-out-ip6-l2", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VLIB_REGISTER_NODE (acl_out_l2_ip4_node) = { .function = acl_out_ip4_l2_node_fn, .name = "acl-plugin-out-ip4-l2", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VLIB_REGISTER_NODE (acl_in_fa_ip6_node) = { .function = acl_in_ip6_fa_node_fn, .name = "acl-plugin-in-ip6-fa", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VNET_FEATURE_INIT (acl_in_ip6_fa_feature, static) = { .arc_name = "ip6-unicast", .node_name = "acl-plugin-in-ip6-fa", .runs_before = VNET_FEATURES ("ip6-flow-classify"), }; VLIB_REGISTER_NODE (acl_in_fa_ip4_node) = { .function = acl_in_ip4_fa_node_fn, .name = "acl-plugin-in-ip4-fa", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VNET_FEATURE_INIT (acl_in_ip4_fa_feature, static) = { .arc_name = "ip4-unicast", .node_name = "acl-plugin-in-ip4-fa", .runs_before = VNET_FEATURES ("ip4-flow-classify"), }; VLIB_REGISTER_NODE (acl_out_fa_ip6_node) = { .function = acl_out_ip6_fa_node_fn, .name = "acl-plugin-out-ip6-fa", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VNET_FEATURE_INIT (acl_out_ip6_fa_feature, static) = { .arc_name = "ip6-output", .node_name = "acl-plugin-out-ip6-fa", .runs_before = VNET_FEATURES ("interface-output"), }; VLIB_REGISTER_NODE (acl_out_fa_ip4_node) = { .function = acl_out_ip4_fa_node_fn, .name = "acl-plugin-out-ip4-fa", .vector_size = sizeof (u32), .format_trace = format_acl_fa_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN (acl_fa_error_strings), .error_strings = acl_fa_error_strings, .n_next_nodes = ACL_FA_N_NEXT, /* edit / add dispositions here */ .next_nodes = { [ACL_FA_ERROR_DROP] = "error-drop", } }; VNET_FEATURE_INIT (acl_out_ip4_fa_feature, static) = { .arc_name = "ip4-output", .node_name = "acl-plugin-out-ip4-fa", .runs_before = VNET_FEATURES ("interface-output"), }; /* *INDENT-ON* */