aboutsummaryrefslogtreecommitdiffstats
path: root/tests/func/honeycomb/mgmt-cfg-routing-apihc-apivat-func.robot
blob: 6651cd7fa292519581a0b056c201dad03e0bc8b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) 2017 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

*** Settings ***
| Library | resources.libraries.python.honeycomb.Routing.RoutingKeywords
| Library | resources.libraries.python.Trace.Trace
| Resource | resources/libraries/robot/default.robot
| Resource | resources/libraries/robot/testing_path.robot
| Resource | resources/libraries/robot/ipv4.robot
| Resource | resources/libraries/robot/ipv6.robot
| Resource | resources/libraries/robot/honeycomb/honeycomb.robot
| Resource | resources/libraries/robot/honeycomb/interfaces.robot
| Resource | resources/libraries/robot/honeycomb/routing.robot
| Suite Setup | Vpp nodes ra suppress link layer | ${nodes}
| Test Setup | Clear Packet Trace on All DUTs | ${nodes}
| Suite Teardown | Run Keyword If Any Tests Failed
| ... | Restart Honeycomb And VPP And Clear Persisted Configuration | ${node}
| Test Teardown | Honeycomb routing test teardown
| ... | ${node} | ${table}
| Documentation | *Honeycomb routing test suite.*
| Force Tags | Honeycomb_sanity

*** Test Cases ***
| TC01: Single hop IPv4 route
| | [Documentation]
| | ... | [Top] TG=DUT1=TG.
| | ... | [Enc] Eth-IPv4-ICMP.
| | ... | [Cfg] (Using Honeycomb API) On DUT1 add ARP entries to both TG\
| | ... | interfaces and configure route with TG-if2 as next-hop.
| | ... | [Ver] Send ICMP packet from first TG interface to configured route
| | ... | destination. Receive packet on the second TG interface.
| | ${table}= | Set Variable | table1
| | Given Setup interfaces and neighbors for IPv4 routing test
| | When Honeycomb configures routing table
| | ... | ${node} | table1 | ipv4 | ${table1} | ${1}
| | Then Routing data from Honeycomb should contain
| | ... | ${node} | table1 | ipv4 | ${table1_oper}
| | And Verify Route IPv4 | ${nodes['TG']}
| | ... | ${src_ip} | ${dst_ip}
| | ... | ${tg_to_dut_if1} | ${tg_to_dut_if1_mac}
| | ... | ${tg_to_dut_if2} | ${dut_to_tg_if1_mac}

| TC02: Multi hop IPv4 route
| | [Documentation]
| | ... | [Top] TG=DUT1=TG.
| | ... | [Enc] Eth-IPv4-ICMP.
| | ... | [Cfg] (Using Honeycomb API) On DUT1 add ARP entries to both TG\
| | ... | interfaces and configure two routes through the second DUT interface.
| | ... | [Ver] Send 100 ICMP packets from first TG interface to configured
| | ... | route destination. Receive all packets on the second TG interface and\
| | ... | verify that each destination MAC was used by exactly 50 packets.
| | ... | Receive packet on the second TG interface.
| | ${table}= | Set Variable | table2
| | Given Setup interfaces and neighbors for IPv4 routing test
| | And Honeycomb adds interface ipv4 neighbor | ${dut_node} | ${dut_to_tg_if2}
| | ... | ${next_hop1} | ${next_hop_mac1}
| | And Honeycomb adds interface ipv4 neighbor | ${dut_node} | ${dut_to_tg_if2}
| | ... | ${next_hop2} | ${next_hop_mac2}
| | When Honeycomb configures routing table
| | ... | ${node} | table2 | ipv4 | ${table2} | ${1}
| | Then Routing data from Honeycomb should contain
| | ... | ${node} | table2 | ipv4 | ${table2_oper}
| | And Verify multipath Route | ${nodes['TG']}
| | ... | ${src_ip} | ${dst_ip}
| | ... | ${tg_to_dut_if1} | ${tg_to_dut_if1_mac}
| | ... | ${tg_to_dut_if2} | ${dut_to_tg_if1_mac}
| | ... | ${dut_to_tg_if2_mac} | ${next_hop_mac1} | ${next_hop_mac2}

| TC03: Special hop - blackhole IPv4 route
| | [Documentation]
| | ... | [Top] TG=DUT1=TG.
| | ... | [Enc] Eth-IPv4-ICMP.
| | ... | [Cfg] (Using Honeycomb API) On DUT1 add ARP entries to both TG\
| | ... | interfaces and configure route with special rule blackhole.
| | ... | [Ver] Send ICMP packet from first TG interface to configured route
| | ... | destination. Make sure no packet is received on the second TG\
| | ... | interface.
| | ${table}= | Set Variable | table3
| | Given Setup interfaces and neighbors for IPv4 routing test
| | When Honeycomb configures routing table
| | ... | ${node} | table3 | ipv4 | ${table3} | ${1} | special=${TRUE}
| | Then Routing data from Honeycomb should contain
| | ... | ${node} | table3 | ipv4 | ${table3_oper}
| | And Run keyword and Expect Error | ICMP echo Rx timeout
| | ... | Verify Route IPv4 | ${nodes['TG']}
| | ... | ${src_ip} | ${dst_ip}
| | ... | ${tg_to_dut_if1} | ${tg_to_dut_if1_mac}
| | ... | ${tg_to_dut_if2} | ${dut_to_tg_if1_mac}

| TC04: Single hop IPv6 route
| | [Documentation]
| | ... | [Top] TG=DUT1=TG.
| | ... | [Enc] Eth-IPv6-ICMPv6.
| | ... | [Cfg] (Using Honeycomb API) On DUT1 add ARP entries to both TG\
| | ... | interfaces and configure route with TG-if2 as next-hop.
| | ... | [Ver] Send ICMP packet from first TG interface to configured route
| | ... | destination. Receive packet on the second TG interface.
| | ${table}= | Set Variable | table4
| | Given Setup interfaces and neighbors for IPv6 routing test
| | When Honeycomb configures routing table
| | ... | ${node} | table4 | ipv6 | ${table4} | ${1}
| | Then Routing data from Honeycomb should contain
| | ... | ${node} | table4 | ipv6 | ${table4_oper}
| | And Verify Route IPv6 | ${nodes['TG']}
| | ... | ${src_ip} | ${next_hop}
| | ... | ${tg_to_dut_if1} | ${tg_to_dut_if1_mac}
| | ... | ${tg_to_dut_if2} | ${dut_to_tg_if1_mac}

| TC05: Multi hop IPv6 route
| | [Documentation]
| | ... | [Top] TG=DUT1=TG.
| | ... | [Enc] Eth-IPv6-ICMPv6.
| | ... | [Cfg] (Using Honeycomb API) On DUT1 add ARP entries to both TG\
| | ... | interfaces and configure two routes through the second DUT interface.
| | ... | [Ver] Send 100 ICMP packets from first TG interface to configured
| | ... | route destination. Receive all packets on the second TG interface and\
| | ... | verify that each destination MAC was used by exactly 50 packets.
| | ... | Receive packet on the second TG interface.
| | ${table}= | Set Variable | table5
| | Given Setup interfaces and neighbors for IPv6 routing test
| | And Honeycomb adds interface ipv6 neighbor | ${dut_node} | ${dut_to_tg_if2}
| | ... | ${next_hop1} | ${next_hop_mac1}
| | And Honeycomb adds interface ipv6 neighbor | ${dut_node} | ${dut_to_tg_if2}
| | ... | ${next_hop2} | ${next_hop_mac2}
| | When Honeycomb configures routing table
| | ... | ${node} | table5 | ipv6 | ${table5} | ${1}
| | Then Routing data from Honeycomb should contain
| | ... | ${node} | table5 | ipv6 | ${table5_oper}
| | And Verify multipath Route | ${nodes['TG']}
| | ... | ${src_ip} | ${dst_ip}
| | ... | ${tg_to_dut_if1} | ${tg_to_dut_if1_mac}
| | ... | ${tg_to_dut_if2} | ${dut_to_tg_if1_mac}
| | ... | ${dut_to_tg_if2_mac} | ${next_hop_mac1} | ${next_hop_mac2}

| TC06: Special hop - blackhole IPv6 route
| | [Documentation]
| | ... | [Top] TG=DUT1=TG.
| | ... | [Enc] Eth-IPv6-ICMPv6.
| | ... | [Cfg] (Using Honeycomb API) On DUT1 add ARP entries to both TG\
| | ... | interfaces and configure route with special rule blackhole.
| | ... | [Ver] Send ICMP packet from first TG interface to configured route
| | ... | destination. Make sure no packet is received on the second TG\
| | ... | interface.
| | ${table}= | Set Variable | table6
| | Given Setup interfaces and neighbors for IPv6 routing test
| | When Honeycomb configures routing table
| | ... | ${node} | table6 | ipv6 | ${table6} | ${1} | special=${TRUE}
| | Then Routing data from Honeycomb should contain
| | ... | ${node} | table6 | ipv6 | ${table6_oper}
| | And Run keyword and Expect Error | ICMP echo Rx timeout
| | ... | Verify Route IPv6 | ${nodes['TG']}
| | ... | ${src_ip} | ${dst_ip}
| | ... | ${tg_to_dut_if1} | ${tg_to_dut_if1_mac}
| | ... | ${tg_to_dut_if2} | ${dut_to_tg_if1_mac}

*** Keywords ***
| Setup interfaces and neighbors for IPv4 routing test
| | Path for 2-node testing is set
| | ... | ${nodes['TG']} | ${nodes['DUT1']} | ${nodes['TG']}
| | Import Variables | resources/test_data/honeycomb/routing.py
| | ... | ${nodes['DUT1']} | ipv4 | ${dut_to_tg_if2}
| | Honeycomb sets interface vrf ID
| | ... | ${dut_node} | ${dut_to_tg_if1} | ${1} | ipv4
| | Honeycomb sets interface vrf ID
| | ... | ${dut_node} | ${dut_to_tg_if2} | ${1} | ipv4
| | Honeycomb sets interface state | ${dut_node} | ${dut_to_tg_if1} | up
| | Honeycomb sets interface state | ${dut_node} | ${dut_to_tg_if2} | up
| | Honeycomb sets interface ipv4 address with prefix | ${dut_node}
| | ... | ${dut_to_tg_if1} | ${dut_to_tg_if1_ip} | ${prefix_len}
| | Honeycomb sets interface ipv4 address with prefix | ${dut_node}
| | ... | ${dut_to_tg_if2} | ${dut_to_tg_if2_ip} | ${prefix_len}
| | Honeycomb adds interface ipv4 neighbor | ${dut_node} | ${dut_to_tg_if1}
| | ... | ${src_ip} | ${tg_to_dut_if1_mac}
| | Honeycomb adds interface ipv4 neighbor | ${dut_node} | ${dut_to_tg_if2}
| | ... | ${next_hop} | ${tg_to_dut_if2_mac}

| Setup interfaces and neighbors for IPv6 routing test
| | Path for 2-node testing is set
| | ... | ${nodes['TG']} | ${nodes['DUT1']} | ${nodes['TG']}
| | Import Variables | resources/test_data/honeycomb/routing.py
| | ... | ${nodes['DUT1']} | ipv6 | ${dut_to_tg_if2}
| | Honeycomb sets interface vrf ID
| | ... | ${dut_node} | ${dut_to_tg_if1} | ${1} | ipv6
| | Honeycomb sets interface vrf ID
| | ... | ${dut_node} | ${dut_to_tg_if2} | ${1} | ipv6
| | Honeycomb sets interface state | ${dut_node} | ${dut_to_tg_if1} | up
| | Honeycomb sets interface state | ${dut_node} | ${dut_to_tg_if2} | up
| | Honeycomb sets interface ipv6 address | ${dut_node}
| | ... | ${dut_to_tg_if1} | ${dut_to_tg_if1_ip} | ${prefix_len}
| | Honeycomb sets interface ipv6 address | ${dut_node}
| | ... | ${dut_to_tg_if2} | ${dut_to_tg_if2_ip} | ${prefix_len}
| | Honeycomb adds interface ipv6 neighbor | ${dut_node} | ${dut_to_tg_if1}
| | ... | ${src_ip} | ${tg_to_dut_if1_mac}
| | Honeycomb adds interface ipv6 neighbor | ${dut_node} | ${dut_to_tg_if2}
| | ... | ${next_hop} | ${tg_to_dut_if2_mac}

| Honeycomb routing test teardown
| | [arguments] | ${node} | ${routing_table}
| | Show Packet Trace on All DUTs | ${nodes}
| | Log routing configuration from VAT | ${node}
| | Honeycomb removes routing configuration | ${node} | ${routing_table}
n>--; } next_index = node->cached_next_index; from = vlib_frame_vector_args (frame); n_left_from = frame->n_vectors; while (n_left_from > 0) { u32 n_left_to_next; vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); /* Not enough load/store slots to dual loop... */ while (n_left_from > 0 && n_left_to_next > 0) { u32 bi0; vlib_buffer_t *b0; u32 next0 = ACL_NEXT_INDEX_DENY; u32 table_index0; vnet_classify_table_t *t0; vnet_classify_entry_t *e0; u64 hash0; u8 *h0; u8 error0; /* Stride 3 seems to work best */ if (PREDICT_TRUE (n_left_from > 3)) { vlib_buffer_t *p1 = vlib_get_buffer (vm, from[3]); vnet_classify_table_t *tp1; u32 table_index1; u64 phash1; table_index1 = vnet_buffer (p1)->l2_classify.table_index; if (PREDICT_TRUE (table_index1 != ~0)) { tp1 = pool_elt_at_index (vcm->tables, table_index1); phash1 = vnet_buffer (p1)->l2_classify.hash; vnet_classify_prefetch_entry (tp1, phash1); } } /* speculatively enqueue b0 to the current next frame */ bi0 = from[0]; to_next[0] = bi0; from += 1; to_next += 1; n_left_from -= 1; n_left_to_next -= 1; b0 = vlib_get_buffer (vm, bi0); table_index0 = vnet_buffer (b0)->l2_classify.table_index; e0 = 0; t0 = 0; vnet_buffer (b0)->l2_classify.opaque_index = ~0; /* Determine the next node */ next0 = vnet_l2_feature_next (b0, msm->feat_next_node_index[is_output], is_output ? L2OUTPUT_FEAT_ACL : L2INPUT_FEAT_ACL); if (PREDICT_TRUE (table_index0 != ~0)) { hash0 = vnet_buffer (b0)->l2_classify.hash; t0 = pool_elt_at_index (vcm->tables, table_index0); if (t0->current_data_flag == CLASSIFY_FLAG_USE_CURR_DATA) h0 = (void *) vlib_buffer_get_current (b0) + t0->current_data_offset; else h0 = (void *) vlib_buffer_get_current (b0); e0 = vnet_classify_find_entry (t0, (u8 *) h0, hash0, now); if (e0) { vnet_buffer (b0)->l2_classify.opaque_index = e0->opaque_index; vlib_buffer_advance (b0, e0->advance); next0 = (e0->next_index < ACL_NEXT_INDEX_N_NEXT) ? e0->next_index : next0; hits++; if (is_output) error0 = (next0 == ACL_NEXT_INDEX_DENY) ? L2_OUTACL_ERROR_SESSION_DENY : L2_INACL_ERROR_NONE; else error0 = (next0 == ACL_NEXT_INDEX_DENY) ? L2_OUTACL_ERROR_SESSION_DENY : L2_OUTACL_ERROR_NONE; b0->error = node->errors[error0]; } else { while (1) { if (PREDICT_TRUE (t0->next_table_index != ~0)) t0 = pool_elt_at_index (vcm->tables, t0->next_table_index); else { next0 = (t0->miss_next_index < ACL_NEXT_INDEX_N_NEXT) ? t0->miss_next_index : next0; misses++; if (is_output) error0 = (next0 == ACL_NEXT_INDEX_DENY) ? L2_OUTACL_ERROR_TABLE_MISS : L2_OUTACL_ERROR_NONE; else error0 = (next0 == ACL_NEXT_INDEX_DENY) ? L2_INACL_ERROR_TABLE_MISS : L2_INACL_ERROR_NONE; b0->error = node->errors[error0]; break; } if (t0->current_data_flag == CLASSIFY_FLAG_USE_CURR_DATA) h0 = (void *) vlib_buffer_get_current (b0) + t0->current_data_offset; else h0 = (void *) vlib_buffer_get_current (b0); hash0 = vnet_classify_hash_packet (t0, (u8 *) h0); e0 = vnet_classify_find_entry (t0, (u8 *) h0, hash0, now); if (e0) { vlib_buffer_advance (b0, e0->advance); next0 = (e0->next_index < ACL_NEXT_INDEX_N_NEXT) ? e0->next_index : next0; hits++; chain_hits++; if (is_output) error0 = (next0 == ACL_NEXT_INDEX_DENY) ? L2_OUTACL_ERROR_SESSION_DENY : L2_OUTACL_ERROR_NONE; else error0 = (next0 == ACL_NEXT_INDEX_DENY) ? L2_INACL_ERROR_SESSION_DENY : L2_INACL_ERROR_NONE; b0->error = node->errors[error0]; break; } } } } if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE) && (b0->flags & VLIB_BUFFER_IS_TRACED))) { l2_in_out_acl_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t)); t->sw_if_index = vnet_buffer (b0)->sw_if_index[is_output ? VLIB_TX : VLIB_RX]; t->next_index = next0; t->table_index = t0 ? t0 - vcm->tables : ~0; t->offset = (t0 && e0) ? vnet_classify_get_offset (t0, e0) : ~0; } /* verify speculative enqueue, maybe switch current next frame */ vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, n_left_to_next, bi0, next0); } vlib_put_next_frame (vm, node, next_index, n_left_to_next); } vlib_node_increment_counter (vm, node->node_index, is_output ? L2_OUTACL_ERROR_MISS : L2_INACL_ERROR_MISS, misses); vlib_node_increment_counter (vm, node->node_index, is_output ? L2_OUTACL_ERROR_HIT : L2_INACL_ERROR_HIT, hits); vlib_node_increment_counter (vm, node->node_index, is_output ? L2_OUTACL_ERROR_CHAIN_HIT : L2_INACL_ERROR_CHAIN_HIT, chain_hits); return frame->n_vectors; } VLIB_NODE_FN (l2_inacl_node) (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { return l2_in_out_acl_node_fn (vm, node, frame, IN_OUT_ACL_INPUT_TABLE_GROUP); } VLIB_NODE_FN (l2_outacl_node) (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { return l2_in_out_acl_node_fn (vm, node, frame, IN_OUT_ACL_OUTPUT_TABLE_GROUP); } /* *INDENT-OFF* */ VLIB_REGISTER_NODE (l2_inacl_node) = { .name = "l2-input-acl", .vector_size = sizeof (u32), .format_trace = format_l2_inacl_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN(l2_inacl_error_strings), .error_strings = l2_inacl_error_strings, .n_next_nodes = ACL_NEXT_INDEX_N_NEXT, /* edit / add dispositions here */ .next_nodes = { [ACL_NEXT_INDEX_DENY] = "error-drop", }, }; VLIB_REGISTER_NODE (l2_outacl_node) = { .name = "l2-output-acl", .vector_size = sizeof (u32), .format_trace = format_l2_outacl_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN(l2_outacl_error_strings), .error_strings = l2_outacl_error_strings, .n_next_nodes = ACL_NEXT_INDEX_N_NEXT, /* edit / add dispositions here */ .next_nodes = { [ACL_NEXT_INDEX_DENY] = "error-drop", }, }; /* *INDENT-ON* */ #ifndef CLIB_MARCH_VARIANT clib_error_t * l2_in_out_acl_init (vlib_main_t * vm) { l2_in_out_acl_main_t *mp = &l2_in_out_acl_main; mp->vlib_main = vm; mp->vnet_main = vnet_get_main (); /* Initialize the feature next-node indexes */ feat_bitmap_init_next_nodes (vm, l2_inacl_node.index, L2INPUT_N_FEAT, l2input_get_feat_names (), mp->feat_next_node_index [IN_OUT_ACL_INPUT_TABLE_GROUP]); feat_bitmap_init_next_nodes (vm, l2_outacl_node.index, L2OUTPUT_N_FEAT, l2output_get_feat_names (), mp->feat_next_node_index [IN_OUT_ACL_OUTPUT_TABLE_GROUP]); return 0; } VLIB_INIT_FUNCTION (l2_in_out_acl_init); #endif /* CLIB_MARCH_VARIANT */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */