aboutsummaryrefslogtreecommitdiffstats
path: root/tests/vpp/perf/crypto/10ge2p1x710-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr.robot
blob: e41197d1af368d609f933ff4529055a815ed436f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2021 Intel and/or its affiliates.
# Copyright (c) 2021 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

*** Settings ***
| Resource | resources/libraries/robot/shared/default.robot
| Resource | resources/libraries/robot/crypto/ipsec.robot
|
| Force Tags | 3_NODE_SINGLE_LINK_TOPO | PERFTEST | HW_ENV | NDRPDR | TNL_1
| ... | IP4FWD | IPSEC | IPSECSW | ASYNC | IPSECINT | NIC_Intel-X710 | BASE
| ... | SCHEDULER | AES_128_GCM | AES | DRV_VFIO_PCI
| ... | RXQ_SIZE_0 | TXQ_SIZE_0
| ... | ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm
|
| Suite Setup | Setup suite topology interfaces | performance
| Suite Teardown | Tear down suite | performance
| Test Setup | Setup test | performance
| Test Teardown | Tear down test | performance | ipsec_sa
|
| Test Template | Local Template
|
| Documentation | *RFC2544: Pkt throughput IPv4 IPsec tunnel mode.*
|
| ... | *[Top] Network Topologies:* TG-DUT1-DUT2-TG 3-node circular topology
| ... | with single links between nodes.
| ... | *[Enc] Packet Encapsulations:* Eth-IPv4 on TG-DUTn,
| ... | Eth-IPv4-IPSec on DUT1-DUT2
| ... | *[Cfg] DUT configuration:* DUT1 and DUT2 are configured with multiple
| ... | IPsec tunnels between them, run with IPsec async mode and use crypto
| ... | sw scheduler engine to schedule crypto work to crypto cores. DUTs get
| ... | IPv4 traffic from TG, encrypt it and send to another DUT, where packets
| ... | are decrypted and sent back to TG.
| ... | *[Ver] TG verification:* TG finds and reports throughput NDR (Non Drop\
| ... | Rate) with zero packet loss tolerance and throughput PDR (Partial Drop\
| ... | Rate) with non-zero packet loss tolerance (LT) expressed in percentage\
| ... | of packets transmitted. NDR and PDR are discovered for different\
| ... | Ethernet L2 frame sizes using MLRsearch library.\
| ... | Test packets are generated by TG on
| ... | links to DUTs. TG traffic profile contains two L3 flow-groups
| ... | (flow-group per direction, number of flows per flow-group equals to
| ... | number of IPSec tunnels) with all packets
| ... | containing Ethernet header, IPv4 header with IP protocol=61 and
| ... | static payload. MAC addresses are matching MAC addresses of the TG
| ... | node interfaces. Incrementing of IP.dst (IPv4 destination address) field
| ... | is applied to both streams.
| ... | *[Ref] Applicable standard specifications:* RFC4303 and RFC2544.

*** Variables ***
| @{plugins_to_enable}= | dpdk_plugin.so | perfmon_plugin.so
| ... | crypto_native_plugin.so
| ... | crypto_ipsecmb_plugin.so | crypto_sw_scheduler_plugin.so
| ... | crypto_openssl_plugin.so
| ${crypto_type}= | ${None}
| ${nic_name}= | Intel-X710
| ${nic_driver}= | vfio-pci
| ${nic_rxq_size}= | 0
| ${nic_txq_size}= | 0
| ${nic_pfs}= | 2
| ${nic_vfs}= | 0
| ${osi_layer}= | L3
| ${overhead}= | ${54}
| ${tg_if1_ip4}= | 192.168.10.254
| ${dut1_if1_ip4}= | 192.168.10.11
| ${dut1_if2_ip4}= | 100.0.0.1
| ${dut2_if1_ip4}= | 200.0.0.102
| ${dut2_if2_ip4}= | 192.168.20.11
| ${tg_if2_ip4}= | 192.168.20.254
| ${raddr_ip4}= | 20.0.0.0
| ${laddr_ip4}= | 10.0.0.0
| ${addr_range}= | ${24}
| ${n_tunnels}= | ${1}
| ${dp_cores_count}= | ${1}
# Traffic profile:
| ${traffic_profile}= | trex-stl-3n-ethip4-ip4dst${n_tunnels}

*** Keywords ***
| Local Template
| | [Documentation]
| | ... | [Cfg] DUT runs IPSec tunneling AES_128_GCM config.\
| | ... | Each DUT uses one physical core for data plane workers
| | ... | and rest of ${phy_cores} physical core(s) for crypto workers.
| | ... | [Ver] Measure NDR and PDR values using MLRsearch algorithm.\
| |
| | ... | *Arguments:*
| | ... | - frame_size - Framesize in Bytes in integer or string (IMIX_v4_1).
| | ... | Type: integer, string
| | ... | - phy_cores - Total number of physical cores. Type: integer
| | ... | - rxq - Number of RX queues, default value: ${1}. Type: integer
| |
| | [Arguments] | ${frame_size} | ${phy_cores} | ${rxq}=${None}
| |
| | Set Test Variable | \${frame_size}
| |
| | # These are enums (not strings) so they cannot be in Variables table.
| | ${encr_alg}= | Crypto Alg AES GCM 128
| | ${auth_alg}= | Set Variable | ${NONE}
| |
| | Given Set Max Rate And Jumbo
| | And Add worker threads to all DUTs | ${phy_cores} | ${rxq}
| | And Pre-initialize layer driver | ${nic_driver}
| | And Apply startup configuration on all VPP DUTs
| | When Initialize layer driver | ${nic_driver}
| | And Initialize layer interface
| | And Enable IPSec Async Mode on all VPP DUTs
| | And Set Data Plane And Feature Plane Workers for IPsec on all VPP DUTs
| | And Initialize IPSec in 3-node circular topology
| | And VPP IPsec Create Tunnel Interfaces
| | ... | ${nodes} | ${dut1_if2_ip4} | ${dut2_if1_ip4} | ${DUT1_${int}2}[0]
| | ... | ${DUT2_${int}1}[0] | ${n_tunnels} | ${encr_alg} | ${auth_alg}
| | ... | ${laddr_ip4} | ${raddr_ip4} | ${addr_range}
| | Then Find NDR and PDR intervals using optimized search

*** Test Cases ***
| 64B-2c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 64B | 2C
| | frame_size=${64} | phy_cores=${2}

| 64B-3c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 64B | 3C
| | frame_size=${64} | phy_cores=${3}

| 64B-4c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 64B | 4C
| | frame_size=${64} | phy_cores=${4}

| 1518B-2c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 1518B | 2C
| | frame_size=${1518} | phy_cores=${2}

| 1518B-3c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 1518B | 3C
| | frame_size=${1518} | phy_cores=${3}

| 1518B-4c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 1518B | 4C
| | frame_size=${1518} | phy_cores=${4}

| 9000B-2c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 9000B | 2C
| | frame_size=${9000} | phy_cores=${2}

| 9000B-3c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 9000B | 3C
| | frame_size=${9000} | phy_cores=${3}

| 9000B-4c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | 9000B | 4C
| | frame_size=${9000} | phy_cores=${4}

| IMIX-2c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | IMIX | 2C
| | frame_size=IMIX_v4_1 | phy_cores=${2}

| IMIX-3c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | IMIX | 3C
| | frame_size=IMIX_v4_1 | phy_cores=${3}

| IMIX-4c-ethip4ipsec1tnlswasync-scheduler-ip4base-int-aes128gcm-ndrpdr
| | [Tags] | IMIX | 4C
| | frame_size=IMIX_v4_1 | phy_cores=${4}
de. * * The post-rewrite check insures the packet matches what an ingress packet looks * like before going through the interface's ingress tag rewrite operation. It verifies * that such a packet arriving on the wire at this port would be classified as arriving * an input interface equal to the packet's output interface. This can be done by running * the output packet's vlan tags and output port through the interface classification, * and checking if the resulting interface matches the output interface. * * The post-rewrite check is performed here. */ static uword l2_efp_filter_node_fn (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { u32 n_left_from, *from, *to_next; l2_efp_filter_next_t next_index; l2_efp_filter_main_t *msm = &l2_efp_filter_main; vlib_node_t *n = vlib_get_node (vm, l2_efp_filter_node.index); u32 node_counter_base_index = n->error_heap_index; vlib_error_main_t *em = &vm->error_main; u32 cached_sw_if_index = ~0; u32 cached_next_index = ~0; /* invalidate cache to begin with */ cached_sw_if_index = ~0; from = vlib_frame_vector_args (frame); n_left_from = frame->n_vectors; /* number of packets to process */ next_index = node->cached_next_index; while (n_left_from > 0) { u32 n_left_to_next; /* get space to enqueue frame to graph node "next_index" */ vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); while (n_left_from >= 6 && n_left_to_next >= 2) { u32 bi0, bi1; vlib_buffer_t *b0, *b1; u32 next0, next1; u32 sw_if_index0, sw_if_index1; u32 feature_bitmap0, feature_bitmap1; u16 first_ethertype0, first_ethertype1; u16 outer_id0, inner_id0, outer_id1, inner_id1; u32 match_flags0, match_flags1; u32 port_sw_if_index0, subint_sw_if_index0, port_sw_if_index1, subint_sw_if_index1; vnet_hw_interface_t *hi0, *hi1; main_intf_t *main_intf0, *main_intf1; vlan_intf_t *vlan_intf0, *vlan_intf1; qinq_intf_t *qinq_intf0, *qinq_intf1; u32 is_l20, is_l21; __attribute__ ((unused)) u32 matched0, matched1; u8 error0, error1; /* Prefetch next iteration. */ { vlib_buffer_t *p2, *p3, *p4, *p5; __attribute__ ((unused)) u32 sw_if_index2, sw_if_index3; p2 = vlib_get_buffer (vm, from[2]); p3 = vlib_get_buffer (vm, from[3]); p4 = vlib_get_buffer (vm, from[4]); p5 = vlib_get_buffer (vm, from[5]); /* Prefetch the buffer header and packet for the N+2 loop iteration */ vlib_prefetch_buffer_header (p4, LOAD); vlib_prefetch_buffer_header (p5, LOAD); CLIB_PREFETCH (p4->data, CLIB_CACHE_LINE_BYTES, STORE); CLIB_PREFETCH (p5->data, CLIB_CACHE_LINE_BYTES, STORE); /* * Prefetch the input config for the N+1 loop iteration * This depends on the buffer header above */ sw_if_index2 = vnet_buffer (p2)->sw_if_index[VLIB_TX]; sw_if_index3 = vnet_buffer (p3)->sw_if_index[VLIB_TX]; /* * $$$ TODO * CLIB_PREFETCH (vec_elt_at_index(l2output_main.configs, sw_if_index2), CLIB_CACHE_LINE_BYTES, LOAD); * CLIB_PREFETCH (vec_elt_at_index(l2output_main.configs, sw_if_index3), CLIB_CACHE_LINE_BYTES, LOAD); */ } /* speculatively enqueue b0 and b1 to the current next frame */ /* bi is "buffer index", b is pointer to the buffer */ to_next[0] = bi0 = from[0]; to_next[1] = bi1 = from[1]; from += 2; to_next += 2; n_left_from -= 2; n_left_to_next -= 2; b0 = vlib_get_buffer (vm, bi0); b1 = vlib_get_buffer (vm, bi1); /* TX interface handles */ sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_TX]; sw_if_index1 = vnet_buffer (b1)->sw_if_index[VLIB_TX]; /* process 2 packets */ em->counters[node_counter_base_index + L2_EFP_FILTER_ERROR_L2_EFP_FILTER] += 2; /* Remove ourself from the feature bitmap */ feature_bitmap0 = vnet_buffer (b0)->l2.feature_bitmap & ~L2OUTPUT_FEAT_EFP_FILTER; feature_bitmap1 = vnet_buffer (b1)->l2.feature_bitmap & ~L2OUTPUT_FEAT_EFP_FILTER; /* Determine next node */ l2_output_dispatch (msm->vlib_main, msm->vnet_main, node, l2_efp_filter_node.index, &cached_sw_if_index, &cached_next_index, &msm->next_nodes, b0, sw_if_index0, feature_bitmap0, &next0); l2_output_dispatch (msm->vlib_main, msm->vnet_main, node, l2_efp_filter_node.index, &cached_sw_if_index, &cached_next_index, &msm->next_nodes, b1, sw_if_index1, feature_bitmap1, &next1); /* perform the efp filter check on two packets */ extract_keys (msm->vnet_main, sw_if_index0, b0, &port_sw_if_index0, &first_ethertype0, &outer_id0, &inner_id0, &match_flags0); extract_keys (msm->vnet_main, sw_if_index1, b1, &port_sw_if_index1, &first_ethertype1, &outer_id1, &inner_id1, &match_flags1); eth_vlan_table_lookups (&ethernet_main, msm->vnet_main, port_sw_if_index0, first_ethertype0, outer_id0, inner_id0, &hi0, &main_intf0, &vlan_intf0, &qinq_intf0); eth_vlan_table_lookups (&ethernet_main, msm->vnet_main, port_sw_if_index1, first_ethertype1, outer_id1, inner_id1, &hi1, &main_intf1, &vlan_intf1, &qinq_intf1); matched0 = eth_identify_subint (hi0, b0, match_flags0, main_intf0, vlan_intf0, qinq_intf0, &subint_sw_if_index0, &error0, &is_l20); matched1 = eth_identify_subint (hi1, b1, match_flags1, main_intf1, vlan_intf1, qinq_intf1, &subint_sw_if_index1, &error1, &is_l21); if (PREDICT_FALSE (sw_if_index0 != subint_sw_if_index0)) { /* Drop packet */ next0 = L2_EFP_FILTER_NEXT_DROP; b0->error = node->errors[L2_EFP_FILTER_ERROR_DROP]; } if (PREDICT_FALSE (sw_if_index1 != subint_sw_if_index1)) { /* Drop packet */ next1 = L2_EFP_FILTER_NEXT_DROP; b1->error = node->errors[L2_EFP_FILTER_ERROR_DROP]; } if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE))) { if (b0->flags & VLIB_BUFFER_IS_TRACED) { ethernet_header_t *h0 = vlib_buffer_get_current (b0); l2_efp_filter_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t)); t->sw_if_index = sw_if_index0; clib_memcpy (t->src, h0->src_address, 6); clib_memcpy (t->dst, h0->dst_address, 6); clib_memcpy (t->raw, &h0->type, sizeof (t->raw)); } if (b1->flags & VLIB_BUFFER_IS_TRACED) { ethernet_header_t *h1 = vlib_buffer_get_current (b1); l2_efp_filter_trace_t *t = vlib_add_trace (vm, node, b1, sizeof (*t)); t->sw_if_index = sw_if_index1; clib_memcpy (t->src, h1->src_address, 6); clib_memcpy (t->dst, h1->dst_address, 6); clib_memcpy (t->raw, &h1->type, sizeof (t->raw)); } } /* verify speculative enqueues, maybe switch current next frame */ /* if next0==next1==next_index then nothing special needs to be done */ vlib_validate_buffer_enqueue_x2 (vm, node, next_index, to_next, n_left_to_next, bi0, bi1, next0, next1); } while (n_left_from > 0 && n_left_to_next > 0) { u32 bi0; vlib_buffer_t *b0; u32 next0; u32 sw_if_index0; u32 feature_bitmap0; u16 first_ethertype0; u16 outer_id0, inner_id0; u32 match_flags0; u32 port_sw_if_index0, subint_sw_if_index0; vnet_hw_interface_t *hi0; main_intf_t *main_intf0; vlan_intf_t *vlan_intf0; qinq_intf_t *qinq_intf0; u32 is_l20; __attribute__ ((unused)) u32 matched0; u8 error0; /* speculatively enqueue b0 to the current next frame */ bi0 = from[0]; to_next[0] = bi0; from += 1; to_next += 1; n_left_from -= 1; n_left_to_next -= 1; b0 = vlib_get_buffer (vm, bi0); sw_if_index0 = vnet_buffer (b0)->sw_if_index[VLIB_TX]; /* process 1 packet */ em->counters[node_counter_base_index + L2_EFP_FILTER_ERROR_L2_EFP_FILTER] += 1; /* Remove ourself from the feature bitmap */ feature_bitmap0 = vnet_buffer (b0)->l2.feature_bitmap & ~L2OUTPUT_FEAT_EFP_FILTER; /* Determine next node */ l2_output_dispatch (msm->vlib_main, msm->vnet_main, node, l2_efp_filter_node.index, &cached_sw_if_index, &cached_next_index, &msm->next_nodes, b0, sw_if_index0, feature_bitmap0, &next0); /* perform the efp filter check on one packet */ extract_keys (msm->vnet_main, sw_if_index0, b0, &port_sw_if_index0, &first_ethertype0, &outer_id0, &inner_id0, &match_flags0); eth_vlan_table_lookups (&ethernet_main, msm->vnet_main, port_sw_if_index0, first_ethertype0, outer_id0, inner_id0, &hi0, &main_intf0, &vlan_intf0, &qinq_intf0); matched0 = eth_identify_subint (hi0, b0, match_flags0, main_intf0, vlan_intf0, qinq_intf0, &subint_sw_if_index0, &error0, &is_l20); if (PREDICT_FALSE (sw_if_index0 != subint_sw_if_index0)) { /* Drop packet */ next0 = L2_EFP_FILTER_NEXT_DROP; b0->error = node->errors[L2_EFP_FILTER_ERROR_DROP]; } if (PREDICT_FALSE ((node->flags & VLIB_NODE_FLAG_TRACE) && (b0->flags & VLIB_BUFFER_IS_TRACED))) { ethernet_header_t *h0 = vlib_buffer_get_current (b0); l2_efp_filter_trace_t *t = vlib_add_trace (vm, node, b0, sizeof (*t)); t->sw_if_index = sw_if_index0; clib_memcpy (t->src, h0->src_address, 6); clib_memcpy (t->dst, h0->dst_address, 6); clib_memcpy (t->raw, &h0->type, sizeof (t->raw)); } /* verify speculative enqueue, maybe switch current next frame */ vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next, n_left_to_next, bi0, next0); } vlib_put_next_frame (vm, node, next_index, n_left_to_next); } return frame->n_vectors; } /* *INDENT-OFF* */ VLIB_REGISTER_NODE (l2_efp_filter_node,static) = { .function = l2_efp_filter_node_fn, .name = "l2-efp-filter", .vector_size = sizeof (u32), .format_trace = format_l2_efp_filter_trace, .type = VLIB_NODE_TYPE_INTERNAL, .n_errors = ARRAY_LEN(l2_efp_filter_error_strings), .error_strings = l2_efp_filter_error_strings, .n_next_nodes = L2_EFP_FILTER_N_NEXT, /* edit / add dispositions here */ .next_nodes = { [L2_EFP_FILTER_NEXT_DROP] = "error-drop", }, }; /* *INDENT-ON* */ VLIB_NODE_FUNCTION_MULTIARCH (l2_efp_filter_node, l2_efp_filter_node_fn) clib_error_t *l2_efp_filter_init (vlib_main_t * vm) { l2_efp_filter_main_t *mp = &l2_efp_filter_main; mp->vlib_main = vm; mp->vnet_main = vnet_get_main (); /* Initialize the feature next-node indexes */ feat_bitmap_init_next_nodes (vm, l2_efp_filter_node.index, L2OUTPUT_N_FEAT, l2output_get_feat_names (), mp->next_nodes.feat_next_node_index); /* Initialize the output node mapping table */ l2output_init_output_node_vec (&mp->next_nodes.output_node_index_vec); return 0; } VLIB_INIT_FUNCTION (l2_efp_filter_init); /** Enable/disable the EFP Filter check on the subinterface. */ void l2_efp_filter_configure (vnet_main_t * vnet_main, u32 sw_if_index, u32 enable) { /* set the interface flag */ l2output_intf_bitmap_enable (sw_if_index, L2OUTPUT_FEAT_EFP_FILTER, enable); } /** * Set subinterface egress efp filter enable/disable. * The CLI format is: * set interface l2 efp-filter <interface> [disable]] */ static clib_error_t * int_l2_efp_filter (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { vnet_main_t *vnm = vnet_get_main (); clib_error_t *error = 0; u32 sw_if_index; u32 enable; if (!unformat_user (input, unformat_vnet_sw_interface, vnm, &sw_if_index)) { error = clib_error_return (0, "unknown interface `%U'", format_unformat_error, input); goto done; } enable = 1; if (unformat (input, "disable")) { enable = 0; } /* enable/disable the feature */ l2_efp_filter_configure (vnm, sw_if_index, enable); done: return error; } /*? * EFP filtering is a basic switch feature which prevents an interface from * transmitting a packet that doesn't match the interface's ingress match * criteria. The check has two parts, one performed before egress vlan tag * rewrite and one after. This command enables or disables the EFP filtering * for a given sub-interface. * * @cliexpar * Example of how to enable a Layer 2 efp-filter on a sub-interface: * @cliexcmd{set interface l2 efp-filter GigabitEthernet0/8/0.200} * Example of how to disable a Layer 2 efp-filter on a sub-interface: * @cliexcmd{set interface l2 efp-filter GigabitEthernet0/8/0.200 disable} ?*/ /* *INDENT-OFF* */ VLIB_CLI_COMMAND (int_l2_efp_filter_cli, static) = { .path = "set interface l2 efp-filter", .short_help = "set interface l2 efp-filter <interface> [disable]", .function = int_l2_efp_filter, }; /* *INDENT-ON* */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */