aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_eal/common/eal_common_memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/librte_eal/common/eal_common_memory.c')
-rw-r--r--lib/librte_eal/common/eal_common_memory.c892
1 files changed, 852 insertions, 40 deletions
diff --git a/lib/librte_eal/common/eal_common_memory.c b/lib/librte_eal/common/eal_common_memory.c
index 852f3bb9..4f0688f9 100644
--- a/lib/librte_eal/common/eal_common_memory.c
+++ b/lib/librte_eal/common/eal_common_memory.c
@@ -2,82 +2,752 @@
* Copyright(c) 2010-2014 Intel Corporation
*/
+#include <errno.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
+#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/queue.h>
+#include <rte_fbarray.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
+#include <rte_errno.h>
#include <rte_log.h>
+#include "eal_memalloc.h"
#include "eal_private.h"
#include "eal_internal_cfg.h"
/*
- * Return a pointer to a read-only table of struct rte_physmem_desc
- * elements, containing the layout of all addressable physical
- * memory. The last element of the table contains a NULL address.
+ * Try to mmap *size bytes in /dev/zero. If it is successful, return the
+ * pointer to the mmap'd area and keep *size unmodified. Else, retry
+ * with a smaller zone: decrease *size by hugepage_sz until it reaches
+ * 0. In this case, return NULL. Note: this function returns an address
+ * which is a multiple of hugepage size.
*/
-const struct rte_memseg *
-rte_eal_get_physmem_layout(void)
+
+#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
+
+static uint64_t baseaddr_offset;
+static uint64_t system_page_sz;
+
+void *
+eal_get_virtual_area(void *requested_addr, size_t *size,
+ size_t page_sz, int flags, int mmap_flags)
+{
+ bool addr_is_hint, allow_shrink, unmap, no_align;
+ uint64_t map_sz;
+ void *mapped_addr, *aligned_addr;
+
+ if (system_page_sz == 0)
+ system_page_sz = sysconf(_SC_PAGESIZE);
+
+ mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
+
+ RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
+
+ addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
+ allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
+ unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
+
+ if (requested_addr == NULL && internal_config.base_virtaddr != 0) {
+ requested_addr = (void *) (internal_config.base_virtaddr +
+ (size_t)baseaddr_offset);
+ requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
+ addr_is_hint = true;
+ }
+
+ /* if requested address is not aligned by page size, or if requested
+ * address is NULL, add page size to requested length as we may get an
+ * address that's aligned by system page size, which can be smaller than
+ * our requested page size. additionally, we shouldn't try to align if
+ * system page size is the same as requested page size.
+ */
+ no_align = (requested_addr != NULL &&
+ ((uintptr_t)requested_addr & (page_sz - 1)) == 0) ||
+ page_sz == system_page_sz;
+
+ do {
+ map_sz = no_align ? *size : *size + page_sz;
+ if (map_sz > SIZE_MAX) {
+ RTE_LOG(ERR, EAL, "Map size too big\n");
+ rte_errno = E2BIG;
+ return NULL;
+ }
+
+ mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_READ,
+ mmap_flags, -1, 0);
+ if (mapped_addr == MAP_FAILED && allow_shrink)
+ *size -= page_sz;
+ } while (allow_shrink && mapped_addr == MAP_FAILED && *size > 0);
+
+ /* align resulting address - if map failed, we will ignore the value
+ * anyway, so no need to add additional checks.
+ */
+ aligned_addr = no_align ? mapped_addr :
+ RTE_PTR_ALIGN(mapped_addr, page_sz);
+
+ if (*size == 0) {
+ RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
+ strerror(errno));
+ rte_errno = errno;
+ return NULL;
+ } else if (mapped_addr == MAP_FAILED) {
+ RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
+ strerror(errno));
+ /* pass errno up the call chain */
+ rte_errno = errno;
+ return NULL;
+ } else if (requested_addr != NULL && !addr_is_hint &&
+ aligned_addr != requested_addr) {
+ RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
+ requested_addr, aligned_addr);
+ munmap(mapped_addr, map_sz);
+ rte_errno = EADDRNOTAVAIL;
+ return NULL;
+ } else if (requested_addr != NULL && addr_is_hint &&
+ aligned_addr != requested_addr) {
+ RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
+ requested_addr, aligned_addr);
+ RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
+ }
+
+ RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
+ aligned_addr, *size);
+
+ if (unmap) {
+ munmap(mapped_addr, map_sz);
+ } else if (!no_align) {
+ void *map_end, *aligned_end;
+ size_t before_len, after_len;
+
+ /* when we reserve space with alignment, we add alignment to
+ * mapping size. On 32-bit, if 1GB alignment was requested, this
+ * would waste 1GB of address space, which is a luxury we cannot
+ * afford. so, if alignment was performed, check if any unneeded
+ * address space can be unmapped back.
+ */
+
+ map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
+ aligned_end = RTE_PTR_ADD(aligned_addr, *size);
+
+ /* unmap space before aligned mmap address */
+ before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
+ if (before_len > 0)
+ munmap(mapped_addr, before_len);
+
+ /* unmap space after aligned end mmap address */
+ after_len = RTE_PTR_DIFF(map_end, aligned_end);
+ if (after_len > 0)
+ munmap(aligned_end, after_len);
+ }
+
+ baseaddr_offset += *size;
+
+ return aligned_addr;
+}
+
+static uint64_t
+get_mem_amount(uint64_t page_sz, uint64_t max_mem)
+{
+ uint64_t area_sz, max_pages;
+
+ /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
+ max_pages = RTE_MAX_MEMSEG_PER_LIST;
+ max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
+
+ area_sz = RTE_MIN(page_sz * max_pages, max_mem);
+
+ /* make sure the list isn't smaller than the page size */
+ area_sz = RTE_MAX(area_sz, page_sz);
+
+ return RTE_ALIGN(area_sz, page_sz);
+}
+
+static int
+free_memseg_list(struct rte_memseg_list *msl)
+{
+ if (rte_fbarray_destroy(&msl->memseg_arr)) {
+ RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
+ return -1;
+ }
+ memset(msl, 0, sizeof(*msl));
+ return 0;
+}
+
+static int
+alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
+ uint64_t max_mem, int socket_id, int type_msl_idx)
+{
+ char name[RTE_FBARRAY_NAME_LEN];
+ uint64_t mem_amount;
+ int max_segs;
+
+ mem_amount = get_mem_amount(page_sz, max_mem);
+ max_segs = mem_amount / page_sz;
+
+ snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
+ type_msl_idx);
+ if (rte_fbarray_init(&msl->memseg_arr, name, max_segs,
+ sizeof(struct rte_memseg))) {
+ RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
+ rte_strerror(rte_errno));
+ return -1;
+ }
+
+ msl->page_sz = page_sz;
+ msl->socket_id = socket_id;
+ msl->base_va = NULL;
+
+ RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
+ (size_t)page_sz >> 10, socket_id);
+
+ return 0;
+}
+
+static int
+alloc_va_space(struct rte_memseg_list *msl)
+{
+ uint64_t page_sz;
+ size_t mem_sz;
+ void *addr;
+ int flags = 0;
+
+#ifdef RTE_ARCH_PPC_64
+ flags |= MAP_HUGETLB;
+#endif
+
+ page_sz = msl->page_sz;
+ mem_sz = page_sz * msl->memseg_arr.len;
+
+ addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
+ if (addr == NULL) {
+ if (rte_errno == EADDRNOTAVAIL)
+ RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
+ (unsigned long long)mem_sz, msl->base_va);
+ else
+ RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
+ return -1;
+ }
+ msl->base_va = addr;
+
+ return 0;
+}
+
+static int __rte_unused
+memseg_primary_init_32(void)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int active_sockets, hpi_idx, msl_idx = 0;
+ unsigned int socket_id, i;
+ struct rte_memseg_list *msl;
+ uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
+ uint64_t max_mem;
+
+ /* no-huge does not need this at all */
+ if (internal_config.no_hugetlbfs)
+ return 0;
+
+ /* this is a giant hack, but desperate times call for desperate
+ * measures. in legacy 32-bit mode, we cannot preallocate VA space,
+ * because having upwards of 2 gigabytes of VA space already mapped will
+ * interfere with our ability to map and sort hugepages.
+ *
+ * therefore, in legacy 32-bit mode, we will be initializing memseg
+ * lists much later - in eal_memory.c, right after we unmap all the
+ * unneeded pages. this will not affect secondary processes, as those
+ * should be able to mmap the space without (too many) problems.
+ */
+ if (internal_config.legacy_mem)
+ return 0;
+
+ /* 32-bit mode is a very special case. we cannot know in advance where
+ * the user will want to allocate their memory, so we have to do some
+ * heuristics.
+ */
+ active_sockets = 0;
+ total_requested_mem = 0;
+ if (internal_config.force_sockets)
+ for (i = 0; i < rte_socket_count(); i++) {
+ uint64_t mem;
+
+ socket_id = rte_socket_id_by_idx(i);
+ mem = internal_config.socket_mem[socket_id];
+
+ if (mem == 0)
+ continue;
+
+ active_sockets++;
+ total_requested_mem += mem;
+ }
+ else
+ total_requested_mem = internal_config.memory;
+
+ max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
+ if (total_requested_mem > max_mem) {
+ RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
+ (unsigned int)(max_mem >> 20));
+ return -1;
+ }
+ total_extra_mem = max_mem - total_requested_mem;
+ extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
+ total_extra_mem / active_sockets;
+
+ /* the allocation logic is a little bit convoluted, but here's how it
+ * works, in a nutshell:
+ * - if user hasn't specified on which sockets to allocate memory via
+ * --socket-mem, we allocate all of our memory on master core socket.
+ * - if user has specified sockets to allocate memory on, there may be
+ * some "unused" memory left (e.g. if user has specified --socket-mem
+ * such that not all memory adds up to 2 gigabytes), so add it to all
+ * sockets that are in use equally.
+ *
+ * page sizes are sorted by size in descending order, so we can safely
+ * assume that we dispense with bigger page sizes first.
+ */
+
+ /* create memseg lists */
+ for (i = 0; i < rte_socket_count(); i++) {
+ int hp_sizes = (int) internal_config.num_hugepage_sizes;
+ uint64_t max_socket_mem, cur_socket_mem;
+ unsigned int master_lcore_socket;
+ struct rte_config *cfg = rte_eal_get_configuration();
+ bool skip;
+
+ socket_id = rte_socket_id_by_idx(i);
+
+#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ if (socket_id > 0)
+ break;
+#endif
+
+ /* if we didn't specifically request memory on this socket */
+ skip = active_sockets != 0 &&
+ internal_config.socket_mem[socket_id] == 0;
+ /* ...or if we didn't specifically request memory on *any*
+ * socket, and this is not master lcore
+ */
+ master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
+ skip |= active_sockets == 0 && socket_id != master_lcore_socket;
+
+ if (skip) {
+ RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
+ socket_id);
+ continue;
+ }
+
+ /* max amount of memory on this socket */
+ max_socket_mem = (active_sockets != 0 ?
+ internal_config.socket_mem[socket_id] :
+ internal_config.memory) +
+ extra_mem_per_socket;
+ cur_socket_mem = 0;
+
+ for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
+ uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
+ uint64_t hugepage_sz;
+ struct hugepage_info *hpi;
+ int type_msl_idx, max_segs, total_segs = 0;
+
+ hpi = &internal_config.hugepage_info[hpi_idx];
+ hugepage_sz = hpi->hugepage_sz;
+
+ /* check if pages are actually available */
+ if (hpi->num_pages[socket_id] == 0)
+ continue;
+
+ max_segs = RTE_MAX_MEMSEG_PER_TYPE;
+ max_pagesz_mem = max_socket_mem - cur_socket_mem;
+
+ /* make it multiple of page size */
+ max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
+ hugepage_sz);
+
+ RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
+ "%" PRIu64 "M on socket %i\n",
+ max_pagesz_mem >> 20, socket_id);
+
+ type_msl_idx = 0;
+ while (cur_pagesz_mem < max_pagesz_mem &&
+ total_segs < max_segs) {
+ if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
+ RTE_LOG(ERR, EAL,
+ "No more space in memseg lists, please increase %s\n",
+ RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
+ return -1;
+ }
+
+ msl = &mcfg->memsegs[msl_idx];
+
+ if (alloc_memseg_list(msl, hugepage_sz,
+ max_pagesz_mem, socket_id,
+ type_msl_idx)) {
+ /* failing to allocate a memseg list is
+ * a serious error.
+ */
+ RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
+ return -1;
+ }
+
+ if (alloc_va_space(msl)) {
+ /* if we couldn't allocate VA space, we
+ * can try with smaller page sizes.
+ */
+ RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
+ /* deallocate memseg list */
+ if (free_memseg_list(msl))
+ return -1;
+ break;
+ }
+
+ total_segs += msl->memseg_arr.len;
+ cur_pagesz_mem = total_segs * hugepage_sz;
+ type_msl_idx++;
+ msl_idx++;
+ }
+ cur_socket_mem += cur_pagesz_mem;
+ }
+ if (cur_socket_mem == 0) {
+ RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
+ socket_id);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+static int __rte_unused
+memseg_primary_init(void)
{
- return rte_eal_get_configuration()->mem_config->memseg;
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int i, socket_id, hpi_idx, msl_idx = 0;
+ struct rte_memseg_list *msl;
+ uint64_t max_mem, total_mem;
+
+ /* no-huge does not need this at all */
+ if (internal_config.no_hugetlbfs)
+ return 0;
+
+ max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
+ total_mem = 0;
+
+ /* create memseg lists */
+ for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
+ hpi_idx++) {
+ struct hugepage_info *hpi;
+ uint64_t hugepage_sz;
+
+ hpi = &internal_config.hugepage_info[hpi_idx];
+ hugepage_sz = hpi->hugepage_sz;
+
+ for (i = 0; i < (int) rte_socket_count(); i++) {
+ uint64_t max_type_mem, total_type_mem = 0;
+ int type_msl_idx, max_segs, total_segs = 0;
+
+ socket_id = rte_socket_id_by_idx(i);
+
+#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ if (socket_id > 0)
+ break;
+#endif
+
+ if (total_mem >= max_mem)
+ break;
+
+ max_type_mem = RTE_MIN(max_mem - total_mem,
+ (uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
+ max_segs = RTE_MAX_MEMSEG_PER_TYPE;
+
+ type_msl_idx = 0;
+ while (total_type_mem < max_type_mem &&
+ total_segs < max_segs) {
+ uint64_t cur_max_mem;
+ if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
+ RTE_LOG(ERR, EAL,
+ "No more space in memseg lists, please increase %s\n",
+ RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
+ return -1;
+ }
+
+ msl = &mcfg->memsegs[msl_idx++];
+
+ cur_max_mem = max_type_mem - total_type_mem;
+ if (alloc_memseg_list(msl, hugepage_sz,
+ cur_max_mem, socket_id,
+ type_msl_idx))
+ return -1;
+
+ total_segs += msl->memseg_arr.len;
+ total_type_mem = total_segs * hugepage_sz;
+ type_msl_idx++;
+
+ if (alloc_va_space(msl)) {
+ RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
+ return -1;
+ }
+ }
+ total_mem += total_type_mem;
+ }
+ }
+ return 0;
}
+static int
+memseg_secondary_init(void)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int msl_idx = 0;
+ struct rte_memseg_list *msl;
+
+ for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
+
+ msl = &mcfg->memsegs[msl_idx];
+
+ /* skip empty memseg lists */
+ if (msl->memseg_arr.len == 0)
+ continue;
+
+ if (rte_fbarray_attach(&msl->memseg_arr)) {
+ RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
+ return -1;
+ }
+
+ /* preallocate VA space */
+ if (alloc_va_space(msl)) {
+ RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+static struct rte_memseg *
+virt2memseg(const void *addr, const struct rte_memseg_list *msl)
+{
+ const struct rte_fbarray *arr;
+ void *start, *end;
+ int ms_idx;
+
+ /* a memseg list was specified, check if it's the right one */
+ start = msl->base_va;
+ end = RTE_PTR_ADD(start, (size_t)msl->page_sz * msl->memseg_arr.len);
+
+ if (addr < start || addr >= end)
+ return NULL;
+
+ /* now, calculate index */
+ arr = &msl->memseg_arr;
+ ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
+ return rte_fbarray_get(arr, ms_idx);
+}
+
+static struct rte_memseg_list *
+virt2memseg_list(const void *addr)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ struct rte_memseg_list *msl;
+ int msl_idx;
+
+ for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
+ void *start, *end;
+ msl = &mcfg->memsegs[msl_idx];
+
+ start = msl->base_va;
+ end = RTE_PTR_ADD(start,
+ (size_t)msl->page_sz * msl->memseg_arr.len);
+ if (addr >= start && addr < end)
+ break;
+ }
+ /* if we didn't find our memseg list */
+ if (msl_idx == RTE_MAX_MEMSEG_LISTS)
+ return NULL;
+ return msl;
+}
+
+__rte_experimental struct rte_memseg_list *
+rte_mem_virt2memseg_list(const void *addr)
+{
+ return virt2memseg_list(addr);
+}
+
+struct virtiova {
+ rte_iova_t iova;
+ void *virt;
+};
+static int
+find_virt(const struct rte_memseg_list *msl __rte_unused,
+ const struct rte_memseg *ms, void *arg)
+{
+ struct virtiova *vi = arg;
+ if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
+ size_t offset = vi->iova - ms->iova;
+ vi->virt = RTE_PTR_ADD(ms->addr, offset);
+ /* stop the walk */
+ return 1;
+ }
+ return 0;
+}
+static int
+find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
+ const struct rte_memseg *ms, size_t len, void *arg)
+{
+ struct virtiova *vi = arg;
+ if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
+ size_t offset = vi->iova - ms->iova;
+ vi->virt = RTE_PTR_ADD(ms->addr, offset);
+ /* stop the walk */
+ return 1;
+ }
+ return 0;
+}
+
+__rte_experimental void *
+rte_mem_iova2virt(rte_iova_t iova)
+{
+ struct virtiova vi;
+
+ memset(&vi, 0, sizeof(vi));
+
+ vi.iova = iova;
+ /* for legacy mem, we can get away with scanning VA-contiguous segments,
+ * as we know they are PA-contiguous as well
+ */
+ if (internal_config.legacy_mem)
+ rte_memseg_contig_walk(find_virt_legacy, &vi);
+ else
+ rte_memseg_walk(find_virt, &vi);
+
+ return vi.virt;
+}
+
+__rte_experimental struct rte_memseg *
+rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
+{
+ return virt2memseg(addr, msl != NULL ? msl :
+ rte_mem_virt2memseg_list(addr));
+}
+
+static int
+physmem_size(const struct rte_memseg_list *msl, void *arg)
+{
+ uint64_t *total_len = arg;
+
+ *total_len += msl->memseg_arr.count * msl->page_sz;
+
+ return 0;
+}
/* get the total size of memory */
uint64_t
rte_eal_get_physmem_size(void)
{
- const struct rte_mem_config *mcfg;
- unsigned i = 0;
uint64_t total_len = 0;
- /* get pointer to global configuration */
- mcfg = rte_eal_get_configuration()->mem_config;
+ rte_memseg_list_walk(physmem_size, &total_len);
- for (i = 0; i < RTE_MAX_MEMSEG; i++) {
- if (mcfg->memseg[i].addr == NULL)
- break;
+ return total_len;
+}
- total_len += mcfg->memseg[i].len;
- }
+static int
+dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
+ void *arg)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int msl_idx, ms_idx;
+ FILE *f = arg;
- return total_len;
+ msl_idx = msl - mcfg->memsegs;
+ if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
+ return -1;
+
+ ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
+ if (ms_idx < 0)
+ return -1;
+
+ fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
+ "virt:%p, socket_id:%"PRId32", "
+ "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
+ "nrank:%"PRIx32"\n",
+ msl_idx, ms_idx,
+ ms->iova,
+ ms->len,
+ ms->addr,
+ ms->socket_id,
+ ms->hugepage_sz,
+ ms->nchannel,
+ ms->nrank);
+
+ return 0;
}
-/* Dump the physical memory layout on console */
-void
-rte_dump_physmem_layout(FILE *f)
+/*
+ * Defining here because declared in rte_memory.h, but the actual implementation
+ * is in eal_common_memalloc.c, like all other memalloc internals.
+ */
+int __rte_experimental
+rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
+ void *arg)
{
- const struct rte_mem_config *mcfg;
- unsigned i = 0;
+ /* FreeBSD boots with legacy mem enabled by default */
+ if (internal_config.legacy_mem) {
+ RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
+ rte_errno = ENOTSUP;
+ return -1;
+ }
+ return eal_memalloc_mem_event_callback_register(name, clb, arg);
+}
- /* get pointer to global configuration */
- mcfg = rte_eal_get_configuration()->mem_config;
+int __rte_experimental
+rte_mem_event_callback_unregister(const char *name, void *arg)
+{
+ /* FreeBSD boots with legacy mem enabled by default */
+ if (internal_config.legacy_mem) {
+ RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
+ rte_errno = ENOTSUP;
+ return -1;
+ }
+ return eal_memalloc_mem_event_callback_unregister(name, arg);
+}
- for (i = 0; i < RTE_MAX_MEMSEG; i++) {
- if (mcfg->memseg[i].addr == NULL)
- break;
+int __rte_experimental
+rte_mem_alloc_validator_register(const char *name,
+ rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
+{
+ /* FreeBSD boots with legacy mem enabled by default */
+ if (internal_config.legacy_mem) {
+ RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
+ rte_errno = ENOTSUP;
+ return -1;
+ }
+ return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
+ limit);
+}
- fprintf(f, "Segment %u: IOVA:0x%"PRIx64", len:%zu, "
- "virt:%p, socket_id:%"PRId32", "
- "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
- "nrank:%"PRIx32"\n", i,
- mcfg->memseg[i].iova,
- mcfg->memseg[i].len,
- mcfg->memseg[i].addr,
- mcfg->memseg[i].socket_id,
- mcfg->memseg[i].hugepage_sz,
- mcfg->memseg[i].nchannel,
- mcfg->memseg[i].nrank);
+int __rte_experimental
+rte_mem_alloc_validator_unregister(const char *name, int socket_id)
+{
+ /* FreeBSD boots with legacy mem enabled by default */
+ if (internal_config.legacy_mem) {
+ RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
+ rte_errno = ENOTSUP;
+ return -1;
}
+ return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
+}
+
+/* Dump the physical memory layout on console */
+void
+rte_dump_physmem_layout(FILE *f)
+{
+ rte_memseg_walk(dump_memseg, f);
}
/* return the number of memory channels */
@@ -117,20 +787,162 @@ rte_mem_lock_page(const void *virt)
return mlock((void *)aligned, page_size);
}
+int __rte_experimental
+rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int i, ms_idx, ret = 0;
+
+ /* do not allow allocations/frees/init while we iterate */
+ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+
+ for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+ struct rte_memseg_list *msl = &mcfg->memsegs[i];
+ const struct rte_memseg *ms;
+ struct rte_fbarray *arr;
+
+ if (msl->memseg_arr.count == 0)
+ continue;
+
+ arr = &msl->memseg_arr;
+
+ ms_idx = rte_fbarray_find_next_used(arr, 0);
+ while (ms_idx >= 0) {
+ int n_segs;
+ size_t len;
+
+ ms = rte_fbarray_get(arr, ms_idx);
+
+ /* find how many more segments there are, starting with
+ * this one.
+ */
+ n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
+ len = n_segs * msl->page_sz;
+
+ ret = func(msl, ms, len, arg);
+ if (ret < 0) {
+ ret = -1;
+ goto out;
+ } else if (ret > 0) {
+ ret = 1;
+ goto out;
+ }
+ ms_idx = rte_fbarray_find_next_used(arr,
+ ms_idx + n_segs);
+ }
+ }
+out:
+ rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+ return ret;
+}
+
+int __rte_experimental
+rte_memseg_walk(rte_memseg_walk_t func, void *arg)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int i, ms_idx, ret = 0;
+
+ /* do not allow allocations/frees/init while we iterate */
+ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+
+ for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+ struct rte_memseg_list *msl = &mcfg->memsegs[i];
+ const struct rte_memseg *ms;
+ struct rte_fbarray *arr;
+
+ if (msl->memseg_arr.count == 0)
+ continue;
+
+ arr = &msl->memseg_arr;
+
+ ms_idx = rte_fbarray_find_next_used(arr, 0);
+ while (ms_idx >= 0) {
+ ms = rte_fbarray_get(arr, ms_idx);
+ ret = func(msl, ms, arg);
+ if (ret < 0) {
+ ret = -1;
+ goto out;
+ } else if (ret > 0) {
+ ret = 1;
+ goto out;
+ }
+ ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
+ }
+ }
+out:
+ rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+ return ret;
+}
+
+int __rte_experimental
+rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int i, ret = 0;
+
+ /* do not allow allocations/frees/init while we iterate */
+ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+
+ for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+ struct rte_memseg_list *msl = &mcfg->memsegs[i];
+
+ if (msl->base_va == NULL)
+ continue;
+
+ ret = func(msl, arg);
+ if (ret < 0) {
+ ret = -1;
+ goto out;
+ }
+ if (ret > 0) {
+ ret = 1;
+ goto out;
+ }
+ }
+out:
+ rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+ return ret;
+}
+
/* init memory subsystem */
int
rte_eal_memory_init(void)
{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ int retval;
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
- const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
+ if (!mcfg)
+ return -1;
+
+ /* lock mem hotplug here, to prevent races while we init */
+ rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+
+ retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
+#ifndef RTE_ARCH_64
+ memseg_primary_init_32() :
+#else
+ memseg_primary_init() :
+#endif
+ memseg_secondary_init();
+
+ if (retval < 0)
+ goto fail;
+
+ if (eal_memalloc_init() < 0)
+ goto fail;
+
+ retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
rte_eal_hugepage_init() :
rte_eal_hugepage_attach();
if (retval < 0)
- return -1;
+ goto fail;
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
- return -1;
+ goto fail;
return 0;
+fail:
+ rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+ return -1;
}