aboutsummaryrefslogtreecommitdiffstats
path: root/app/test-crypto-perf/cperf_test_latency.c
blob: c9c98dc50de3bf50cd318a5a11e4c08f872b83d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2016-2017 Intel Corporation
 */

#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>

#include "cperf_test_latency.h"
#include "cperf_ops.h"
#include "cperf_test_common.h"

struct cperf_op_result {
	uint64_t tsc_start;
	uint64_t tsc_end;
	enum rte_crypto_op_status status;
};

struct cperf_latency_ctx {
	uint8_t dev_id;
	uint16_t qp_id;
	uint8_t lcore_id;

	struct rte_mempool *pool;

	struct rte_cryptodev_sym_session *sess;

	cperf_populate_ops_t populate_ops;

	uint32_t src_buf_offset;
	uint32_t dst_buf_offset;

	const struct cperf_options *options;
	const struct cperf_test_vector *test_vector;
	struct cperf_op_result *res;
};

struct priv_op_data {
	struct cperf_op_result *result;
};

#define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
#define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)

static void
cperf_latency_test_free(struct cperf_latency_ctx *ctx)
{
	if (ctx) {
		if (ctx->sess) {
			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
			rte_cryptodev_sym_session_free(ctx->sess);
		}

		if (ctx->pool)
			rte_mempool_free(ctx->pool);

		rte_free(ctx->res);
		rte_free(ctx);
	}
}

void *
cperf_latency_test_constructor(struct rte_mempool *sess_mp,
		uint8_t dev_id, uint16_t qp_id,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector,
		const struct cperf_op_fns *op_fns)
{
	struct cperf_latency_ctx *ctx = NULL;
	size_t extra_op_priv_size = sizeof(struct priv_op_data);

	ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
	if (ctx == NULL)
		goto err;

	ctx->dev_id = dev_id;
	ctx->qp_id = qp_id;

	ctx->populate_ops = op_fns->populate_ops;
	ctx->options = options;
	ctx->test_vector = test_vector;

	/* IV goes at the end of the crypto operation */
	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
		sizeof(struct rte_crypto_sym_op) +
		sizeof(struct cperf_op_result *);

	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
			iv_offset);
	if (ctx->sess == NULL)
		goto err;

	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
			extra_op_priv_size,
			&ctx->src_buf_offset, &ctx->dst_buf_offset,
			&ctx->pool) < 0)
		goto err;

	ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
			ctx->options->total_ops, 0);

	if (ctx->res == NULL)
		goto err;

	return ctx;
err:
	cperf_latency_test_free(ctx);

	return NULL;
}

static inline void
store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
{
	struct priv_op_data *priv_data;

	priv_data = (struct priv_op_data *) (op->sym + 1);
	priv_data->result->status = op->status;
	priv_data->result->tsc_end = timestamp;
}

int
cperf_latency_test_runner(void *arg)
{
	struct cperf_latency_ctx *ctx = arg;
	uint16_t test_burst_size;
	uint8_t burst_size_idx = 0;
	uint32_t imix_idx = 0;

	static int only_once;

	if (ctx == NULL)
		return 0;

	struct rte_crypto_op *ops[ctx->options->max_burst_size];
	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
	uint64_t i;
	struct priv_op_data *priv_data;

	uint32_t lcore = rte_lcore_id();

#ifdef CPERF_LINEARIZATION_ENABLE
	struct rte_cryptodev_info dev_info;
	int linearize = 0;

	/* Check if source mbufs require coalescing */
	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
		if ((dev_info.feature_flags &
				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
			linearize = 1;
	}
#endif /* CPERF_LINEARIZATION_ENABLE */

	ctx->lcore_id = lcore;

	/* Warm up the host CPU before starting the test */
	for (i = 0; i < ctx->options->total_ops; i++)
		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

	/* Get first size from range or list */
	if (ctx->options->inc_burst_size != 0)
		test_burst_size = ctx->options->min_burst_size;
	else
		test_burst_size = ctx->options->burst_size_list[0];

	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
		sizeof(struct rte_crypto_sym_op) +
		sizeof(struct cperf_op_result *);

	while (test_burst_size <= ctx->options->max_burst_size) {
		uint64_t ops_enqd = 0, ops_deqd = 0;
		uint64_t b_idx = 0;

		uint64_t tsc_val, tsc_end, tsc_start;
		uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
		uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
		uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;

		while (enqd_tot < ctx->options->total_ops) {

			uint16_t burst_size = ((enqd_tot + test_burst_size)
					<= ctx->options->total_ops) ?
							test_burst_size :
							ctx->options->total_ops -
							enqd_tot;

			/* Allocate objects containing crypto operations and mbufs */
			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
						burst_size) != 0) {
				RTE_LOG(ERR, USER1,
					"Failed to allocate more crypto operations "
					"from the crypto operation pool.\n"
					"Consider increasing the pool size "
					"with --pool-sz\n");
				return -1;
			}

			/* Setup crypto op, attach mbuf etc */
			(ctx->populate_ops)(ops, ctx->src_buf_offset,
					ctx->dst_buf_offset,
					burst_size, ctx->sess, ctx->options,
					ctx->test_vector, iv_offset,
					&imix_idx);

			tsc_start = rte_rdtsc_precise();

#ifdef CPERF_LINEARIZATION_ENABLE
			if (linearize) {
				/* PMD doesn't support scatter-gather and source buffer
				 * is segmented.
				 * We need to linearize it before enqueuing.
				 */
				for (i = 0; i < burst_size; i++)
					rte_pktmbuf_linearize(ops[i]->sym->m_src);
			}
#endif /* CPERF_LINEARIZATION_ENABLE */

			/* Enqueue burst of ops on crypto device */
			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
					ops, burst_size);

			/* Dequeue processed burst of ops from crypto device */
			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
					ops_processed, test_burst_size);

			tsc_end = rte_rdtsc_precise();

			/* Free memory for not enqueued operations */
			if (ops_enqd != burst_size)
				rte_mempool_put_bulk(ctx->pool,
						(void **)&ops[ops_enqd],
						burst_size - ops_enqd);

			for (i = 0; i < ops_enqd; i++) {
				ctx->res[tsc_idx].tsc_start = tsc_start;
				/*
				 * Private data structure starts after the end of the
				 * rte_crypto_sym_op structure.
				 */
				priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
				priv_data->result = (void *)&ctx->res[tsc_idx];
				tsc_idx++;
			}

			if (likely(ops_deqd))  {
				/* Free crypto ops so they can be reused. */
				for (i = 0; i < ops_deqd; i++)
					store_timestamp(ops_processed[i], tsc_end);

				rte_mempool_put_bulk(ctx->pool,
						(void **)ops_processed, ops_deqd);

				deqd_tot += ops_deqd;
				deqd_max = max(ops_deqd, deqd_max);
				deqd_min = min(ops_deqd, deqd_min);
			}

			enqd_tot += ops_enqd;
			enqd_max = max(ops_enqd, enqd_max);
			enqd_min = min(ops_enqd, enqd_min);

			b_idx++;
		}

		/* Dequeue any operations still in the crypto device */
		while (deqd_tot < ctx->options->total_ops) {
			/* Sending 0 length burst to flush sw crypto device */
			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

			/* dequeue burst */
			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
					ops_processed, test_burst_size);

			tsc_end = rte_rdtsc_precise();

			if (ops_deqd != 0) {
				for (i = 0; i < ops_deqd; i++)
					store_timestamp(ops_processed[i], tsc_end);

				rte_mempool_put_bulk(ctx->pool,
						(void **)ops_processed, ops_deqd);

				deqd_tot += ops_deqd;
				deqd_max = max(ops_deqd, deqd_max);
				deqd_min = min(ops_deqd, deqd_min);
			}
		}

		for (i = 0; i < tsc_idx; i++) {
			tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
			tsc_max = max(tsc_val, tsc_max);
			tsc_min = min(tsc_val, tsc_min);
			tsc_tot += tsc_val;
		}

		double time_tot, time_avg, time_max, time_min;

		const uint64_t tunit = 1000000; /* us */
		const uint64_t tsc_hz = rte_get_tsc_hz();

		uint64_t enqd_avg = enqd_tot / b_idx;
		uint64_t deqd_avg = deqd_tot / b_idx;
		uint64_t tsc_avg = tsc_tot / tsc_idx;

		time_tot = tunit*(double)(tsc_tot) / tsc_hz;
		time_avg = tunit*(double)(tsc_avg) / tsc_hz;
		time_max = tunit*(double)(tsc_max) / tsc_hz;
		time_min = tunit*(double)(tsc_min) / tsc_hz;

		if (ctx->options->csv) {
			if (!only_once)
				printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
						"Packet Size, cycles, time (us)");

			for (i = 0; i < ctx->options->total_ops; i++) {

				printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
					ctx->lcore_id, ctx->options->test_buffer_size,
					test_burst_size, i + 1,
					ctx->res[i].tsc_end - ctx->res[i].tsc_start,
					tunit * (double) (ctx->res[i].tsc_end
							- ctx->res[i].tsc_start)
						/ tsc_hz);

			}
			only_once = 1;
		} else {
			printf("\n# Device %d on lcore %u\n", ctx->dev_id,
				ctx->lcore_id);
			printf("\n# total operations: %u", ctx->options->total_ops);
			printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
			printf("\n# Burst size: %u", test_burst_size);
			printf("\n#     Number of bursts: %"PRIu64,
					b_idx);

			printf("\n#");
			printf("\n#          \t       Total\t   Average\t   "
					"Maximum\t   Minimum");
			printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
					"%10"PRIu64"\t%10"PRIu64, enqd_tot,
					enqd_avg, enqd_max, enqd_min);
			printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
					"%10"PRIu64"\t%10"PRIu64, deqd_tot,
					deqd_avg, deqd_max, deqd_min);
			printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
					"%10"PRIu64"\t%10"PRIu64, tsc_tot,
					tsc_avg, tsc_max, tsc_min);
			printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
					time_tot, time_avg, time_max, time_min);
			printf("\n\n");

		}

		/* Get next size from range or list */
		if (ctx->options->inc_burst_size != 0)
			test_burst_size += ctx->options->inc_burst_size;
		else {
			if (++burst_size_idx == ctx->options->burst_size_count)
				break;
			test_burst_size =
				ctx->options->burst_size_list[burst_size_idx];
		}
	}

	return 0;
}

void
cperf_latency_test_destructor(void *arg)
{
	struct cperf_latency_ctx *ctx = arg;

	if (ctx == NULL)
		return;

	cperf_latency_test_free(ctx);
}