aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_acl/acl_run_scalar.c
blob: 3d61e794095935c347cfecb50e5707df4746c39d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include "acl_run.h"

/*
 * Resolve priority for multiple results (scalar version).
 * This consists comparing the priority of the current traversal with the
 * running set of results for the packet.
 * For each result, keep a running array of the result (rule number) and
 * its priority for each category.
 */
static inline void
resolve_priority_scalar(uint64_t transition, int n,
	const struct rte_acl_ctx *ctx, struct parms *parms,
	const struct rte_acl_match_results *p, uint32_t categories)
{
	uint32_t i;
	int32_t *saved_priority;
	uint32_t *saved_results;
	const int32_t *priority;
	const uint32_t *results;

	saved_results = parms[n].cmplt->results;
	saved_priority = parms[n].cmplt->priority;

	/* results and priorities for completed trie */
	results = p[transition].results;
	priority = p[transition].priority;

	/* if this is not the first completed trie */
	if (parms[n].cmplt->count != ctx->num_tries) {
		for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {

			if (saved_priority[i] <= priority[i]) {
				saved_priority[i] = priority[i];
				saved_results[i] = results[i];
			}
			if (saved_priority[i + 1] <= priority[i + 1]) {
				saved_priority[i + 1] = priority[i + 1];
				saved_results[i + 1] = results[i + 1];
			}
			if (saved_priority[i + 2] <= priority[i + 2]) {
				saved_priority[i + 2] = priority[i + 2];
				saved_results[i + 2] = results[i + 2];
			}
			if (saved_priority[i + 3] <= priority[i + 3]) {
				saved_priority[i + 3] = priority[i + 3];
				saved_results[i + 3] = results[i + 3];
			}
		}
	} else {
		for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
			saved_priority[i] = priority[i];
			saved_priority[i + 1] = priority[i + 1];
			saved_priority[i + 2] = priority[i + 2];
			saved_priority[i + 3] = priority[i + 3];

			saved_results[i] = results[i];
			saved_results[i + 1] = results[i + 1];
			saved_results[i + 2] = results[i + 2];
			saved_results[i + 3] = results[i + 3];
		}
	}
}

static inline uint32_t
scan_forward(uint32_t input, uint32_t max)
{
	return (input == 0) ? max : rte_bsf32(input);
}

static inline uint64_t
scalar_transition(const uint64_t *trans_table, uint64_t transition,
	uint8_t input)
{
	uint32_t addr, index, ranges, x, a, b, c;

	/* break transition into component parts */
	ranges = transition >> (sizeof(index) * CHAR_BIT);
	index = transition & ~RTE_ACL_NODE_INDEX;
	addr = transition ^ index;

	if (index != RTE_ACL_NODE_DFA) {
		/* calc address for a QRANGE/SINGLE node */
		c = (uint32_t)input * SCALAR_QRANGE_MULT;
		a = ranges | SCALAR_QRANGE_MIN;
		a -= (c & SCALAR_QRANGE_MASK);
		b = c & SCALAR_QRANGE_MIN;
		a &= SCALAR_QRANGE_MIN;
		a ^= (ranges ^ b) & (a ^ b);
		x = scan_forward(a, 32) >> 3;
	} else {
		/* calc address for a DFA node */
		x = ranges >> (input /
			RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
		x &= UINT8_MAX;
		x = input - x;
	}

	addr += x;

	/* pickup next transition */
	transition = *(trans_table + addr);
	return transition;
}

int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t num, uint32_t categories)
{
	int n;
	uint64_t transition0, transition1;
	uint32_t input0, input1;
	struct acl_flow_data flows;
	uint64_t index_array[MAX_SEARCHES_SCALAR];
	struct completion cmplt[MAX_SEARCHES_SCALAR];
	struct parms parms[MAX_SEARCHES_SCALAR];

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
		categories, ctx->trans_table);

	for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	transition0 = index_array[0];
	transition1 = index_array[1];

	while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
		transition0 = acl_match_check(transition0,
			0, ctx, parms, &flows, resolve_priority_scalar);
		transition1 = acl_match_check(transition1,
			1, ctx, parms, &flows, resolve_priority_scalar);
	}

	while (flows.started > 0) {

		input0 = GET_NEXT_4BYTES(parms, 0);
		input1 = GET_NEXT_4BYTES(parms, 1);

		for (n = 0; n < 4; n++) {

			transition0 = scalar_transition(flows.trans,
				transition0, (uint8_t)input0);
			input0 >>= CHAR_BIT;

			transition1 = scalar_transition(flows.trans,
				transition1, (uint8_t)input1);
			input1 >>= CHAR_BIT;
		}

		while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
			transition0 = acl_match_check(transition0,
				0, ctx, parms, &flows, resolve_priority_scalar);
			transition1 = acl_match_check(transition1,
				1, ctx, parms, &flows, resolve_priority_scalar);
		}
	}
	return 0;
}