aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/google/gopacket/packet.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/google/gopacket/packet.go')
-rw-r--r--vendor/github.com/google/gopacket/packet.go838
1 files changed, 0 insertions, 838 deletions
diff --git a/vendor/github.com/google/gopacket/packet.go b/vendor/github.com/google/gopacket/packet.go
deleted file mode 100644
index 76b62d8..0000000
--- a/vendor/github.com/google/gopacket/packet.go
+++ /dev/null
@@ -1,838 +0,0 @@
-// Copyright 2012 Google, Inc. All rights reserved.
-//
-// Use of this source code is governed by a BSD-style license
-// that can be found in the LICENSE file in the root of the source
-// tree.
-
-package gopacket
-
-import (
- "bytes"
- "encoding/hex"
- "errors"
- "fmt"
- "io"
- "os"
- "reflect"
- "runtime/debug"
- "strings"
- "time"
-)
-
-// CaptureInfo provides standardized information about a packet captured off
-// the wire or read from a file.
-type CaptureInfo struct {
- // Timestamp is the time the packet was captured, if that is known.
- Timestamp time.Time
- // CaptureLength is the total number of bytes read off of the wire.
- CaptureLength int
- // Length is the size of the original packet. Should always be >=
- // CaptureLength.
- Length int
- // InterfaceIndex
- InterfaceIndex int
-}
-
-// PacketMetadata contains metadata for a packet.
-type PacketMetadata struct {
- CaptureInfo
- // Truncated is true if packet decoding logic detects that there are fewer
- // bytes in the packet than are detailed in various headers (for example, if
- // the number of bytes in the IPv4 contents/payload is less than IPv4.Length).
- // This is also set automatically for packets captured off the wire if
- // CaptureInfo.CaptureLength < CaptureInfo.Length.
- Truncated bool
-}
-
-// Packet is the primary object used by gopacket. Packets are created by a
-// Decoder's Decode call. A packet is made up of a set of Data, which
-// is broken into a number of Layers as it is decoded.
-type Packet interface {
- //// Functions for outputting the packet as a human-readable string:
- //// ------------------------------------------------------------------
- // String returns a human-readable string representation of the packet.
- // It uses LayerString on each layer to output the layer.
- String() string
- // Dump returns a verbose human-readable string representation of the packet,
- // including a hex dump of all layers. It uses LayerDump on each layer to
- // output the layer.
- Dump() string
-
- //// Functions for accessing arbitrary packet layers:
- //// ------------------------------------------------------------------
- // Layers returns all layers in this packet, computing them as necessary
- Layers() []Layer
- // Layer returns the first layer in this packet of the given type, or nil
- Layer(LayerType) Layer
- // LayerClass returns the first layer in this packet of the given class,
- // or nil.
- LayerClass(LayerClass) Layer
-
- //// Functions for accessing specific types of packet layers. These functions
- //// return the first layer of each type found within the packet.
- //// ------------------------------------------------------------------
- // LinkLayer returns the first link layer in the packet
- LinkLayer() LinkLayer
- // NetworkLayer returns the first network layer in the packet
- NetworkLayer() NetworkLayer
- // TransportLayer returns the first transport layer in the packet
- TransportLayer() TransportLayer
- // ApplicationLayer returns the first application layer in the packet
- ApplicationLayer() ApplicationLayer
- // ErrorLayer is particularly useful, since it returns nil if the packet
- // was fully decoded successfully, and non-nil if an error was encountered
- // in decoding and the packet was only partially decoded. Thus, its output
- // can be used to determine if the entire packet was able to be decoded.
- ErrorLayer() ErrorLayer
-
- //// Functions for accessing data specific to the packet:
- //// ------------------------------------------------------------------
- // Data returns the set of bytes that make up this entire packet.
- Data() []byte
- // Metadata returns packet metadata associated with this packet.
- Metadata() *PacketMetadata
-}
-
-// packet contains all the information we need to fulfill the Packet interface,
-// and its two "subclasses" (yes, no such thing in Go, bear with me),
-// eagerPacket and lazyPacket, provide eager and lazy decoding logic around the
-// various functions needed to access this information.
-type packet struct {
- // data contains the entire packet data for a packet
- data []byte
- // initialLayers is space for an initial set of layers already created inside
- // the packet.
- initialLayers [6]Layer
- // layers contains each layer we've already decoded
- layers []Layer
- // last is the last layer added to the packet
- last Layer
- // metadata is the PacketMetadata for this packet
- metadata PacketMetadata
-
- decodeOptions DecodeOptions
-
- // Pointers to the various important layers
- link LinkLayer
- network NetworkLayer
- transport TransportLayer
- application ApplicationLayer
- failure ErrorLayer
-}
-
-func (p *packet) SetTruncated() {
- p.metadata.Truncated = true
-}
-
-func (p *packet) SetLinkLayer(l LinkLayer) {
- if p.link == nil {
- p.link = l
- }
-}
-
-func (p *packet) SetNetworkLayer(l NetworkLayer) {
- if p.network == nil {
- p.network = l
- }
-}
-
-func (p *packet) SetTransportLayer(l TransportLayer) {
- if p.transport == nil {
- p.transport = l
- }
-}
-
-func (p *packet) SetApplicationLayer(l ApplicationLayer) {
- if p.application == nil {
- p.application = l
- }
-}
-
-func (p *packet) SetErrorLayer(l ErrorLayer) {
- if p.failure == nil {
- p.failure = l
- }
-}
-
-func (p *packet) AddLayer(l Layer) {
- p.layers = append(p.layers, l)
- p.last = l
-}
-
-func (p *packet) DumpPacketData() {
- fmt.Fprint(os.Stderr, p.packetDump())
- os.Stderr.Sync()
-}
-
-func (p *packet) Metadata() *PacketMetadata {
- return &p.metadata
-}
-
-func (p *packet) Data() []byte {
- return p.data
-}
-
-func (p *packet) DecodeOptions() *DecodeOptions {
- return &p.decodeOptions
-}
-
-func (p *packet) addFinalDecodeError(err error, stack []byte) {
- fail := &DecodeFailure{err: err, stack: stack}
- if p.last == nil {
- fail.data = p.data
- } else {
- fail.data = p.last.LayerPayload()
- }
- p.AddLayer(fail)
- p.SetErrorLayer(fail)
-}
-
-func (p *packet) recoverDecodeError() {
- if !p.decodeOptions.SkipDecodeRecovery {
- if r := recover(); r != nil {
- p.addFinalDecodeError(fmt.Errorf("%v", r), debug.Stack())
- }
- }
-}
-
-// LayerString outputs an individual layer as a string. The layer is output
-// in a single line, with no trailing newline. This function is specifically
-// designed to do the right thing for most layers... it follows the following
-// rules:
-// * If the Layer has a String function, just output that.
-// * Otherwise, output all exported fields in the layer, recursing into
-// exported slices and structs.
-// NOTE: This is NOT THE SAME AS fmt's "%#v". %#v will output both exported
-// and unexported fields... many times packet layers contain unexported stuff
-// that would just mess up the output of the layer, see for example the
-// Payload layer and it's internal 'data' field, which contains a large byte
-// array that would really mess up formatting.
-func LayerString(l Layer) string {
- return fmt.Sprintf("%v\t%s", l.LayerType(), layerString(reflect.ValueOf(l), false, false))
-}
-
-// Dumper dumps verbose information on a value. If a layer type implements
-// Dumper, then its LayerDump() string will include the results in its output.
-type Dumper interface {
- Dump() string
-}
-
-// LayerDump outputs a very verbose string representation of a layer. Its
-// output is a concatenation of LayerString(l) and hex.Dump(l.LayerContents()).
-// It contains newlines and ends with a newline.
-func LayerDump(l Layer) string {
- var b bytes.Buffer
- b.WriteString(LayerString(l))
- b.WriteByte('\n')
- if d, ok := l.(Dumper); ok {
- dump := d.Dump()
- if dump != "" {
- b.WriteString(dump)
- if dump[len(dump)-1] != '\n' {
- b.WriteByte('\n')
- }
- }
- }
- b.WriteString(hex.Dump(l.LayerContents()))
- return b.String()
-}
-
-// layerString outputs, recursively, a layer in a "smart" way. See docs for
-// LayerString for more details.
-//
-// Params:
-// i - value to write out
-// anonymous: if we're currently recursing an anonymous member of a struct
-// writeSpace: if we've already written a value in a struct, and need to
-// write a space before writing more. This happens when we write various
-// anonymous values, and need to keep writing more.
-func layerString(v reflect.Value, anonymous bool, writeSpace bool) string {
- // Let String() functions take precedence.
- if v.CanInterface() {
- if s, ok := v.Interface().(fmt.Stringer); ok {
- return s.String()
- }
- }
- // Reflect, and spit out all the exported fields as key=value.
- switch v.Type().Kind() {
- case reflect.Interface, reflect.Ptr:
- if v.IsNil() {
- return "nil"
- }
- r := v.Elem()
- return layerString(r, anonymous, writeSpace)
- case reflect.Struct:
- var b bytes.Buffer
- typ := v.Type()
- if !anonymous {
- b.WriteByte('{')
- }
- for i := 0; i < v.NumField(); i++ {
- // Check if this is upper-case.
- ftype := typ.Field(i)
- f := v.Field(i)
- if ftype.Anonymous {
- anonStr := layerString(f, true, writeSpace)
- writeSpace = writeSpace || anonStr != ""
- b.WriteString(anonStr)
- } else if ftype.PkgPath == "" { // exported
- if writeSpace {
- b.WriteByte(' ')
- }
- writeSpace = true
- fmt.Fprintf(&b, "%s=%s", typ.Field(i).Name, layerString(f, false, writeSpace))
- }
- }
- if !anonymous {
- b.WriteByte('}')
- }
- return b.String()
- case reflect.Slice:
- var b bytes.Buffer
- b.WriteByte('[')
- if v.Len() > 4 {
- fmt.Fprintf(&b, "..%d..", v.Len())
- } else {
- for j := 0; j < v.Len(); j++ {
- if j != 0 {
- b.WriteString(", ")
- }
- b.WriteString(layerString(v.Index(j), false, false))
- }
- }
- b.WriteByte(']')
- return b.String()
- }
- return fmt.Sprintf("%v", v.Interface())
-}
-
-const (
- longBytesLength = 128
-)
-
-// LongBytesGoString returns a string representation of the byte slice shortened
-// using the format '<type>{<truncated slice> ... (<n> bytes)}' if it
-// exceeds a predetermined length. Can be used to avoid filling the display with
-// very long byte strings.
-func LongBytesGoString(buf []byte) string {
- if len(buf) < longBytesLength {
- return fmt.Sprintf("%#v", buf)
- }
- s := fmt.Sprintf("%#v", buf[:longBytesLength-1])
- s = strings.TrimSuffix(s, "}")
- return fmt.Sprintf("%s ... (%d bytes)}", s, len(buf))
-}
-
-func baseLayerString(value reflect.Value) string {
- t := value.Type()
- content := value.Field(0)
- c := make([]byte, content.Len())
- for i := range c {
- c[i] = byte(content.Index(i).Uint())
- }
- payload := value.Field(1)
- p := make([]byte, payload.Len())
- for i := range p {
- p[i] = byte(payload.Index(i).Uint())
- }
- return fmt.Sprintf("%s{Contents:%s, Payload:%s}", t.String(),
- LongBytesGoString(c),
- LongBytesGoString(p))
-}
-
-func layerGoString(i interface{}, b *bytes.Buffer) {
- if s, ok := i.(fmt.GoStringer); ok {
- b.WriteString(s.GoString())
- return
- }
-
- var v reflect.Value
- var ok bool
- if v, ok = i.(reflect.Value); !ok {
- v = reflect.ValueOf(i)
- }
- switch v.Kind() {
- case reflect.Ptr, reflect.Interface:
- if v.Kind() == reflect.Ptr {
- b.WriteByte('&')
- }
- layerGoString(v.Elem().Interface(), b)
- case reflect.Struct:
- t := v.Type()
- b.WriteString(t.String())
- b.WriteByte('{')
- for i := 0; i < v.NumField(); i++ {
- if i > 0 {
- b.WriteString(", ")
- }
- if t.Field(i).Name == "BaseLayer" {
- fmt.Fprintf(b, "BaseLayer:%s", baseLayerString(v.Field(i)))
- } else if v.Field(i).Kind() == reflect.Struct {
- fmt.Fprintf(b, "%s:", t.Field(i).Name)
- layerGoString(v.Field(i), b)
- } else if v.Field(i).Kind() == reflect.Ptr {
- b.WriteByte('&')
- layerGoString(v.Field(i), b)
- } else {
- fmt.Fprintf(b, "%s:%#v", t.Field(i).Name, v.Field(i))
- }
- }
- b.WriteByte('}')
- default:
- fmt.Fprintf(b, "%#v", i)
- }
-}
-
-// LayerGoString returns a representation of the layer in Go syntax,
-// taking care to shorten "very long" BaseLayer byte slices
-func LayerGoString(l Layer) string {
- b := new(bytes.Buffer)
- layerGoString(l, b)
- return b.String()
-}
-
-func (p *packet) packetString() string {
- var b bytes.Buffer
- fmt.Fprintf(&b, "PACKET: %d bytes", len(p.Data()))
- if p.metadata.Truncated {
- b.WriteString(", truncated")
- }
- if p.metadata.Length > 0 {
- fmt.Fprintf(&b, ", wire length %d cap length %d", p.metadata.Length, p.metadata.CaptureLength)
- }
- if !p.metadata.Timestamp.IsZero() {
- fmt.Fprintf(&b, " @ %v", p.metadata.Timestamp)
- }
- b.WriteByte('\n')
- for i, l := range p.layers {
- fmt.Fprintf(&b, "- Layer %d (%02d bytes) = %s\n", i+1, len(l.LayerContents()), LayerString(l))
- }
- return b.String()
-}
-
-func (p *packet) packetDump() string {
- var b bytes.Buffer
- fmt.Fprintf(&b, "-- FULL PACKET DATA (%d bytes) ------------------------------------\n%s", len(p.data), hex.Dump(p.data))
- for i, l := range p.layers {
- fmt.Fprintf(&b, "--- Layer %d ---\n%s", i+1, LayerDump(l))
- }
- return b.String()
-}
-
-// eagerPacket is a packet implementation that does eager decoding. Upon
-// initial construction, it decodes all the layers it can from packet data.
-// eagerPacket implements Packet and PacketBuilder.
-type eagerPacket struct {
- packet
-}
-
-var errNilDecoder = errors.New("NextDecoder passed nil decoder, probably an unsupported decode type")
-
-func (p *eagerPacket) NextDecoder(next Decoder) error {
- if next == nil {
- return errNilDecoder
- }
- if p.last == nil {
- return errors.New("NextDecoder called, but no layers added yet")
- }
- d := p.last.LayerPayload()
- if len(d) == 0 {
- return nil
- }
- // Since we're eager, immediately call the next decoder.
- return next.Decode(d, p)
-}
-func (p *eagerPacket) initialDecode(dec Decoder) {
- defer p.recoverDecodeError()
- err := dec.Decode(p.data, p)
- if err != nil {
- p.addFinalDecodeError(err, nil)
- }
-}
-func (p *eagerPacket) LinkLayer() LinkLayer {
- return p.link
-}
-func (p *eagerPacket) NetworkLayer() NetworkLayer {
- return p.network
-}
-func (p *eagerPacket) TransportLayer() TransportLayer {
- return p.transport
-}
-func (p *eagerPacket) ApplicationLayer() ApplicationLayer {
- return p.application
-}
-func (p *eagerPacket) ErrorLayer() ErrorLayer {
- return p.failure
-}
-func (p *eagerPacket) Layers() []Layer {
- return p.layers
-}
-func (p *eagerPacket) Layer(t LayerType) Layer {
- for _, l := range p.layers {
- if l.LayerType() == t {
- return l
- }
- }
- return nil
-}
-func (p *eagerPacket) LayerClass(lc LayerClass) Layer {
- for _, l := range p.layers {
- if lc.Contains(l.LayerType()) {
- return l
- }
- }
- return nil
-}
-func (p *eagerPacket) String() string { return p.packetString() }
-func (p *eagerPacket) Dump() string { return p.packetDump() }
-
-// lazyPacket does lazy decoding on its packet data. On construction it does
-// no initial decoding. For each function call, it decodes only as many layers
-// as are necessary to compute the return value for that function.
-// lazyPacket implements Packet and PacketBuilder.
-type lazyPacket struct {
- packet
- next Decoder
-}
-
-func (p *lazyPacket) NextDecoder(next Decoder) error {
- if next == nil {
- return errNilDecoder
- }
- p.next = next
- return nil
-}
-func (p *lazyPacket) decodeNextLayer() {
- if p.next == nil {
- return
- }
- d := p.data
- if p.last != nil {
- d = p.last.LayerPayload()
- }
- next := p.next
- p.next = nil
- // We've just set p.next to nil, so if we see we have no data, this should be
- // the final call we get to decodeNextLayer if we return here.
- if len(d) == 0 {
- return
- }
- defer p.recoverDecodeError()
- err := next.Decode(d, p)
- if err != nil {
- p.addFinalDecodeError(err, nil)
- }
-}
-func (p *lazyPacket) LinkLayer() LinkLayer {
- for p.link == nil && p.next != nil {
- p.decodeNextLayer()
- }
- return p.link
-}
-func (p *lazyPacket) NetworkLayer() NetworkLayer {
- for p.network == nil && p.next != nil {
- p.decodeNextLayer()
- }
- return p.network
-}
-func (p *lazyPacket) TransportLayer() TransportLayer {
- for p.transport == nil && p.next != nil {
- p.decodeNextLayer()
- }
- return p.transport
-}
-func (p *lazyPacket) ApplicationLayer() ApplicationLayer {
- for p.application == nil && p.next != nil {
- p.decodeNextLayer()
- }
- return p.application
-}
-func (p *lazyPacket) ErrorLayer() ErrorLayer {
- for p.failure == nil && p.next != nil {
- p.decodeNextLayer()
- }
- return p.failure
-}
-func (p *lazyPacket) Layers() []Layer {
- for p.next != nil {
- p.decodeNextLayer()
- }
- return p.layers
-}
-func (p *lazyPacket) Layer(t LayerType) Layer {
- for _, l := range p.layers {
- if l.LayerType() == t {
- return l
- }
- }
- numLayers := len(p.layers)
- for p.next != nil {
- p.decodeNextLayer()
- for _, l := range p.layers[numLayers:] {
- if l.LayerType() == t {
- return l
- }
- }
- numLayers = len(p.layers)
- }
- return nil
-}
-func (p *lazyPacket) LayerClass(lc LayerClass) Layer {
- for _, l := range p.layers {
- if lc.Contains(l.LayerType()) {
- return l
- }
- }
- numLayers := len(p.layers)
- for p.next != nil {
- p.decodeNextLayer()
- for _, l := range p.layers[numLayers:] {
- if lc.Contains(l.LayerType()) {
- return l
- }
- }
- numLayers = len(p.layers)
- }
- return nil
-}
-func (p *lazyPacket) String() string { p.Layers(); return p.packetString() }
-func (p *lazyPacket) Dump() string { p.Layers(); return p.packetDump() }
-
-// DecodeOptions tells gopacket how to decode a packet.
-type DecodeOptions struct {
- // Lazy decoding decodes the minimum number of layers needed to return data
- // for a packet at each function call. Be careful using this with concurrent
- // packet processors, as each call to packet.* could mutate the packet, and
- // two concurrent function calls could interact poorly.
- Lazy bool
- // NoCopy decoding doesn't copy its input buffer into storage that's owned by
- // the packet. If you can guarantee that the bytes underlying the slice
- // passed into NewPacket aren't going to be modified, this can be faster. If
- // there's any chance that those bytes WILL be changed, this will invalidate
- // your packets.
- NoCopy bool
- // SkipDecodeRecovery skips over panic recovery during packet decoding.
- // Normally, when packets decode, if a panic occurs, that panic is captured
- // by a recover(), and a DecodeFailure layer is added to the packet detailing
- // the issue. If this flag is set, panics are instead allowed to continue up
- // the stack.
- SkipDecodeRecovery bool
- // DecodeStreamsAsDatagrams enables routing of application-level layers in the TCP
- // decoder. If true, we should try to decode layers after TCP in single packets.
- // This is disabled by default because the reassembly package drives the decoding
- // of TCP payload data after reassembly.
- DecodeStreamsAsDatagrams bool
-}
-
-// Default decoding provides the safest (but slowest) method for decoding
-// packets. It eagerly processes all layers (so it's concurrency-safe) and it
-// copies its input buffer upon creation of the packet (so the packet remains
-// valid if the underlying slice is modified. Both of these take time,
-// though, so beware. If you can guarantee that the packet will only be used
-// by one goroutine at a time, set Lazy decoding. If you can guarantee that
-// the underlying slice won't change, set NoCopy decoding.
-var Default = DecodeOptions{}
-
-// Lazy is a DecodeOptions with just Lazy set.
-var Lazy = DecodeOptions{Lazy: true}
-
-// NoCopy is a DecodeOptions with just NoCopy set.
-var NoCopy = DecodeOptions{NoCopy: true}
-
-// DecodeStreamsAsDatagrams is a DecodeOptions with just DecodeStreamsAsDatagrams set.
-var DecodeStreamsAsDatagrams = DecodeOptions{DecodeStreamsAsDatagrams: true}
-
-// NewPacket creates a new Packet object from a set of bytes. The
-// firstLayerDecoder tells it how to interpret the first layer from the bytes,
-// future layers will be generated from that first layer automatically.
-func NewPacket(data []byte, firstLayerDecoder Decoder, options DecodeOptions) Packet {
- if !options.NoCopy {
- dataCopy := make([]byte, len(data))
- copy(dataCopy, data)
- data = dataCopy
- }
- if options.Lazy {
- p := &lazyPacket{
- packet: packet{data: data, decodeOptions: options},
- next: firstLayerDecoder,
- }
- p.layers = p.initialLayers[:0]
- // Crazy craziness:
- // If the following return statemet is REMOVED, and Lazy is FALSE, then
- // eager packet processing becomes 17% FASTER. No, there is no logical
- // explanation for this. However, it's such a hacky micro-optimization that
- // we really can't rely on it. It appears to have to do with the size the
- // compiler guesses for this function's stack space, since one symptom is
- // that with the return statement in place, we more than double calls to
- // runtime.morestack/runtime.lessstack. We'll hope the compiler gets better
- // over time and we get this optimization for free. Until then, we'll have
- // to live with slower packet processing.
- return p
- }
- p := &eagerPacket{
- packet: packet{data: data, decodeOptions: options},
- }
- p.layers = p.initialLayers[:0]
- p.initialDecode(firstLayerDecoder)
- return p
-}
-
-// PacketDataSource is an interface for some source of packet data. Users may
-// create their own implementations, or use the existing implementations in
-// gopacket/pcap (libpcap, allows reading from live interfaces or from
-// pcap files) or gopacket/pfring (PF_RING, allows reading from live
-// interfaces).
-type PacketDataSource interface {
- // ReadPacketData returns the next packet available from this data source.
- // It returns:
- // data: The bytes of an individual packet.
- // ci: Metadata about the capture
- // err: An error encountered while reading packet data. If err != nil,
- // then data/ci will be ignored.
- ReadPacketData() (data []byte, ci CaptureInfo, err error)
-}
-
-// ConcatFinitePacketDataSources returns a PacketDataSource that wraps a set
-// of internal PacketDataSources, each of which will stop with io.EOF after
-// reading a finite number of packets. The returned PacketDataSource will
-// return all packets from the first finite source, followed by all packets from
-// the second, etc. Once all finite sources have returned io.EOF, the returned
-// source will as well.
-func ConcatFinitePacketDataSources(pds ...PacketDataSource) PacketDataSource {
- c := concat(pds)
- return &c
-}
-
-type concat []PacketDataSource
-
-func (c *concat) ReadPacketData() (data []byte, ci CaptureInfo, err error) {
- for len(*c) > 0 {
- data, ci, err = (*c)[0].ReadPacketData()
- if err == io.EOF {
- *c = (*c)[1:]
- continue
- }
- return
- }
- return nil, CaptureInfo{}, io.EOF
-}
-
-// ZeroCopyPacketDataSource is an interface to pull packet data from sources
-// that allow data to be returned without copying to a user-controlled buffer.
-// It's very similar to PacketDataSource, except that the caller must be more
-// careful in how the returned buffer is handled.
-type ZeroCopyPacketDataSource interface {
- // ZeroCopyReadPacketData returns the next packet available from this data source.
- // It returns:
- // data: The bytes of an individual packet. Unlike with
- // PacketDataSource's ReadPacketData, the slice returned here points
- // to a buffer owned by the data source. In particular, the bytes in
- // this buffer may be changed by future calls to
- // ZeroCopyReadPacketData. Do not use the returned buffer after
- // subsequent ZeroCopyReadPacketData calls.
- // ci: Metadata about the capture
- // err: An error encountered while reading packet data. If err != nil,
- // then data/ci will be ignored.
- ZeroCopyReadPacketData() (data []byte, ci CaptureInfo, err error)
-}
-
-// PacketSource reads in packets from a PacketDataSource, decodes them, and
-// returns them.
-//
-// There are currently two different methods for reading packets in through
-// a PacketSource:
-//
-// Reading With Packets Function
-//
-// This method is the most convenient and easiest to code, but lacks
-// flexibility. Packets returns a 'chan Packet', then asynchronously writes
-// packets into that channel. Packets uses a blocking channel, and closes
-// it if an io.EOF is returned by the underlying PacketDataSource. All other
-// PacketDataSource errors are ignored and discarded.
-// for packet := range packetSource.Packets() {
-// ...
-// }
-//
-// Reading With NextPacket Function
-//
-// This method is the most flexible, and exposes errors that may be
-// encountered by the underlying PacketDataSource. It's also the fastest
-// in a tight loop, since it doesn't have the overhead of a channel
-// read/write. However, it requires the user to handle errors, most
-// importantly the io.EOF error in cases where packets are being read from
-// a file.
-// for {
-// packet, err := packetSource.NextPacket()
-// if err == io.EOF {
-// break
-// } else if err != nil {
-// log.Println("Error:", err)
-// continue
-// }
-// handlePacket(packet) // Do something with each packet.
-// }
-type PacketSource struct {
- source PacketDataSource
- decoder Decoder
- // DecodeOptions is the set of options to use for decoding each piece
- // of packet data. This can/should be changed by the user to reflect the
- // way packets should be decoded.
- DecodeOptions
- c chan Packet
-}
-
-// NewPacketSource creates a packet data source.
-func NewPacketSource(source PacketDataSource, decoder Decoder) *PacketSource {
- return &PacketSource{
- source: source,
- decoder: decoder,
- }
-}
-
-// NextPacket returns the next decoded packet from the PacketSource. On error,
-// it returns a nil packet and a non-nil error.
-func (p *PacketSource) NextPacket() (Packet, error) {
- data, ci, err := p.source.ReadPacketData()
- if err != nil {
- return nil, err
- }
- packet := NewPacket(data, p.decoder, p.DecodeOptions)
- m := packet.Metadata()
- m.CaptureInfo = ci
- m.Truncated = m.Truncated || ci.CaptureLength < ci.Length
- return packet, nil
-}
-
-// packetsToChannel reads in all packets from the packet source and sends them
-// to the given channel. When it receives an error, it ignores it. When it
-// receives an io.EOF, it closes the channel.
-func (p *PacketSource) packetsToChannel() {
- defer close(p.c)
- for {
- packet, err := p.NextPacket()
- if err == io.EOF {
- return
- } else if err == nil {
- p.c <- packet
- }
- }
-}
-
-// Packets returns a channel of packets, allowing easy iterating over
-// packets. Packets will be asynchronously read in from the underlying
-// PacketDataSource and written to the returned channel. If the underlying
-// PacketDataSource returns an io.EOF error, the channel will be closed.
-// If any other error is encountered, it is ignored.
-//
-// for packet := range packetSource.Packets() {
-// handlePacket(packet) // Do something with each packet.
-// }
-//
-// If called more than once, returns the same channel.
-func (p *PacketSource) Packets() chan Packet {
- if p.c == nil {
- p.c = make(chan Packet, 1000)
- go p.packetsToChannel()
- }
- return p.c
-}