aboutsummaryrefslogtreecommitdiffstats
path: root/vendor/github.com/google/gopacket/packet.go
blob: 76b62d8ad4ef98aa55f872eb041dbc69e534424a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
// Copyright 2012 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.

package gopacket

import (
	"bytes"
	"encoding/hex"
	"errors"
	"fmt"
	"io"
	"os"
	"reflect"
	"runtime/debug"
	"strings"
	"time"
)

// CaptureInfo provides standardized information about a packet captured off
// the wire or read from a file.
type CaptureInfo struct {
	// Timestamp is the time the packet was captured, if that is known.
	Timestamp time.Time
	// CaptureLength is the total number of bytes read off of the wire.
	CaptureLength int
	// Length is the size of the original packet.  Should always be >=
	// CaptureLength.
	Length int
	// InterfaceIndex
	InterfaceIndex int
}

// PacketMetadata contains metadata for a packet.
type PacketMetadata struct {
	CaptureInfo
	// Truncated is true if packet decoding logic detects that there are fewer
	// bytes in the packet than are detailed in various headers (for example, if
	// the number of bytes in the IPv4 contents/payload is less than IPv4.Length).
	// This is also set automatically for packets captured off the wire if
	// CaptureInfo.CaptureLength < CaptureInfo.Length.
	Truncated bool
}

// Packet is the primary object used by gopacket.  Packets are created by a
// Decoder's Decode call.  A packet is made up of a set of Data, which
// is broken into a number of Layers as it is decoded.
type Packet interface {
	//// Functions for outputting the packet as a human-readable string:
	//// ------------------------------------------------------------------
	// String returns a human-readable string representation of the packet.
	// It uses LayerString on each layer to output the layer.
	String() string
	// Dump returns a verbose human-readable string representation of the packet,
	// including a hex dump of all layers.  It uses LayerDump on each layer to
	// output the layer.
	Dump() string

	//// Functions for accessing arbitrary packet layers:
	//// ------------------------------------------------------------------
	// Layers returns all layers in this packet, computing them as necessary
	Layers() []Layer
	// Layer returns the first layer in this packet of the given type, or nil
	Layer(LayerType) Layer
	// LayerClass returns the first layer in this packet of the given class,
	// or nil.
	LayerClass(LayerClass) Layer

	//// Functions for accessing specific types of packet layers.  These functions
	//// return the first layer of each type found within the packet.
	//// ------------------------------------------------------------------
	// LinkLayer returns the first link layer in the packet
	LinkLayer() LinkLayer
	// NetworkLayer returns the first network layer in the packet
	NetworkLayer() NetworkLayer
	// TransportLayer returns the first transport layer in the packet
	TransportLayer() TransportLayer
	// ApplicationLayer returns the first application layer in the packet
	ApplicationLayer() ApplicationLayer
	// ErrorLayer is particularly useful, since it returns nil if the packet
	// was fully decoded successfully, and non-nil if an error was encountered
	// in decoding and the packet was only partially decoded.  Thus, its output
	// can be used to determine if the entire packet was able to be decoded.
	ErrorLayer() ErrorLayer

	//// Functions for accessing data specific to the packet:
	//// ------------------------------------------------------------------
	// Data returns the set of bytes that make up this entire packet.
	Data() []byte
	// Metadata returns packet metadata associated with this packet.
	Metadata() *PacketMetadata
}

// packet contains all the information we need to fulfill the Packet interface,
// and its two "subclasses" (yes, no such thing in Go, bear with me),
// eagerPacket and lazyPacket, provide eager and lazy decoding logic around the
// various functions needed to access this information.
type packet struct {
	// data contains the entire packet data for a packet
	data []byte
	// initialLayers is space for an initial set of layers already created inside
	// the packet.
	initialLayers [6]Layer
	// layers contains each layer we've already decoded
	layers []Layer
	// last is the last layer added to the packet
	last Layer
	// metadata is the PacketMetadata for this packet
	metadata PacketMetadata

	decodeOptions DecodeOptions

	// Pointers to the various important layers
	link        LinkLayer
	network     NetworkLayer
	transport   TransportLayer
	application ApplicationLayer
	failure     ErrorLayer
}

func (p *packet) SetTruncated() {
	p.metadata.Truncated = true
}

func (p *packet) SetLinkLayer(l LinkLayer) {
	if p.link == nil {
		p.link = l
	}
}

func (p *packet) SetNetworkLayer(l NetworkLayer) {
	if p.network == nil {
		p.network = l
	}
}

func (p *packet) SetTransportLayer(l TransportLayer) {
	if p.transport == nil {
		p.transport = l
	}
}

func (p *packet) SetApplicationLayer(l ApplicationLayer) {
	if p.application == nil {
		p.application = l
	}
}

func (p *packet) SetErrorLayer(l ErrorLayer) {
	if p.failure == nil {
		p.failure = l
	}
}

func (p *packet) AddLayer(l Layer) {
	p.layers = append(p.layers, l)
	p.last = l
}

func (p *packet) DumpPacketData() {
	fmt.Fprint(os.Stderr, p.packetDump())
	os.Stderr.Sync()
}

func (p *packet) Metadata() *PacketMetadata {
	return &p.metadata
}

func (p *packet) Data() []byte {
	return p.data
}

func (p *packet) DecodeOptions() *DecodeOptions {
	return &p.decodeOptions
}

func (p *packet) addFinalDecodeError(err error, stack []byte) {
	fail := &DecodeFailure{err: err, stack: stack}
	if p.last == nil {
		fail.data = p.data
	} else {
		fail.data = p.last.LayerPayload()
	}
	p.AddLayer(fail)
	p.SetErrorLayer(fail)
}

func (p *packet) recoverDecodeError() {
	if !p.decodeOptions.SkipDecodeRecovery {
		if r := recover(); r != nil {
			p.addFinalDecodeError(fmt.Errorf("%v", r), debug.Stack())
		}
	}
}

// LayerString outputs an individual layer as a string.  The layer is output
// in a single line, with no trailing newline.  This function is specifically
// designed to do the right thing for most layers... it follows the following
// rules:
//  * If the Layer has a String function, just output that.
//  * Otherwise, output all exported fields in the layer, recursing into
//    exported slices and structs.
// NOTE:  This is NOT THE SAME AS fmt's "%#v".  %#v will output both exported
// and unexported fields... many times packet layers contain unexported stuff
// that would just mess up the output of the layer, see for example the
// Payload layer and it's internal 'data' field, which contains a large byte
// array that would really mess up formatting.
func LayerString(l Layer) string {
	return fmt.Sprintf("%v\t%s", l.LayerType(), layerString(reflect.ValueOf(l), false, false))
}

// Dumper dumps verbose information on a value.  If a layer type implements
// Dumper, then its LayerDump() string will include the results in its output.
type Dumper interface {
	Dump() string
}

// LayerDump outputs a very verbose string representation of a layer.  Its
// output is a concatenation of LayerString(l) and hex.Dump(l.LayerContents()).
// It contains newlines and ends with a newline.
func LayerDump(l Layer) string {
	var b bytes.Buffer
	b.WriteString(LayerString(l))
	b.WriteByte('\n')
	if d, ok := l.(Dumper); ok {
		dump := d.Dump()
		if dump != "" {
			b.WriteString(dump)
			if dump[len(dump)-1] != '\n' {
				b.WriteByte('\n')
			}
		}
	}
	b.WriteString(hex.Dump(l.LayerContents()))
	return b.String()
}

// layerString outputs, recursively, a layer in a "smart" way.  See docs for
// LayerString for more details.
//
// Params:
//   i - value to write out
//   anonymous:  if we're currently recursing an anonymous member of a struct
//   writeSpace:  if we've already written a value in a struct, and need to
//     write a space before writing more.  This happens when we write various
//     anonymous values, and need to keep writing more.
func layerString(v reflect.Value, anonymous bool, writeSpace bool) string {
	// Let String() functions take precedence.
	if v.CanInterface() {
		if s, ok := v.Interface().(fmt.Stringer); ok {
			return s.String()
		}
	}
	// Reflect, and spit out all the exported fields as key=value.
	switch v.Type().Kind() {
	case reflect.Interface, reflect.Ptr:
		if v.IsNil() {
			return "nil"
		}
		r := v.Elem()
		return layerString(r, anonymous, writeSpace)
	case reflect.Struct:
		var b bytes.Buffer
		typ := v.Type()
		if !anonymous {
			b.WriteByte('{')
		}
		for i := 0; i < v.NumField(); i++ {
			// Check if this is upper-case.
			ftype := typ.Field(i)
			f := v.Field(i)
			if ftype.Anonymous {
				anonStr := layerString(f, true, writeSpace)
				writeSpace = writeSpace || anonStr != ""
				b.WriteString(anonStr)
			} else if ftype.PkgPath == "" { // exported
				if writeSpace {
					b.WriteByte(' ')
				}
				writeSpace = true
				fmt.Fprintf(&b, "%s=%s", typ.Field(i).Name, layerString(f, false, writeSpace))
			}
		}
		if !anonymous {
			b.WriteByte('}')
		}
		return b.String()
	case reflect.Slice:
		var b bytes.Buffer
		b.WriteByte('[')
		if v.Len() > 4 {
			fmt.Fprintf(&b, "..%d..", v.Len())
		} else {
			for j := 0; j < v.Len(); j++ {
				if j != 0 {
					b.WriteString(", ")
				}
				b.WriteString(layerString(v.Index(j), false, false))
			}
		}
		b.WriteByte(']')
		return b.String()
	}
	return fmt.Sprintf("%v", v.Interface())
}

const (
	longBytesLength = 128
)

// LongBytesGoString returns a string representation of the byte slice shortened
// using the format '<type>{<truncated slice> ... (<n> bytes)}' if it
// exceeds a predetermined length. Can be used to avoid filling the display with
// very long byte strings.
func LongBytesGoString(buf []byte) string {
	if len(buf) < longBytesLength {
		return fmt.Sprintf("%#v", buf)
	}
	s := fmt.Sprintf("%#v", buf[:longBytesLength-1])
	s = strings.TrimSuffix(s, "}")
	return fmt.Sprintf("%s ... (%d bytes)}", s, len(buf))
}

func baseLayerString(value reflect.Value) string {
	t := value.Type()
	content := value.Field(0)
	c := make([]byte, content.Len())
	for i := range c {
		c[i] = byte(content.Index(i).Uint())
	}
	payload := value.Field(1)
	p := make([]byte, payload.Len())
	for i := range p {
		p[i] = byte(payload.Index(i).Uint())
	}
	return fmt.Sprintf("%s{Contents:%s, Payload:%s}", t.String(),
		LongBytesGoString(c),
		LongBytesGoString(p))
}

func layerGoString(i interface{}, b *bytes.Buffer) {
	if s, ok := i.(fmt.GoStringer); ok {
		b.WriteString(s.GoString())
		return
	}

	var v reflect.Value
	var ok bool
	if v, ok = i.(reflect.Value); !ok {
		v = reflect.ValueOf(i)
	}
	switch v.Kind() {
	case reflect.Ptr, reflect.Interface:
		if v.Kind() == reflect.Ptr {
			b.WriteByte('&')
		}
		layerGoString(v.Elem().Interface(), b)
	case reflect.Struct:
		t := v.Type()
		b.WriteString(t.String())
		b.WriteByte('{')
		for i := 0; i < v.NumField(); i++ {
			if i > 0 {
				b.WriteString(", ")
			}
			if t.Field(i).Name == "BaseLayer" {
				fmt.Fprintf(b, "BaseLayer:%s", baseLayerString(v.Field(i)))
			} else if v.Field(i).Kind() == reflect.Struct {
				fmt.Fprintf(b, "%s:", t.Field(i).Name)
				layerGoString(v.Field(i), b)
			} else if v.Field(i).Kind() == reflect.Ptr {
				b.WriteByte('&')
				layerGoString(v.Field(i), b)
			} else {
				fmt.Fprintf(b, "%s:%#v", t.Field(i).Name, v.Field(i))
			}
		}
		b.WriteByte('}')
	default:
		fmt.Fprintf(b, "%#v", i)
	}
}

// LayerGoString returns a representation of the layer in Go syntax,
// taking care to shorten "very long" BaseLayer byte slices
func LayerGoString(l Layer) string {
	b := new(bytes.Buffer)
	layerGoString(l, b)
	return b.String()
}

func (p *packet) packetString() string {
	var b bytes.Buffer
	fmt.Fprintf(&b, "PACKET: %d bytes", len(p.Data()))
	if p.metadata.Truncated {
		b.WriteString(", truncated")
	}
	if p.metadata.Length > 0 {
		fmt.Fprintf(&b, ", wire length %d cap length %d", p.metadata.Length, p.metadata.CaptureLength)
	}
	if !p.metadata.Timestamp.IsZero() {
		fmt.Fprintf(&b, " @ %v", p.metadata.Timestamp)
	}
	b.WriteByte('\n')
	for i, l := range p.layers {
		fmt.Fprintf(&b, "- Layer %d (%02d bytes) = %s\n", i+1, len(l.LayerContents()), LayerString(l))
	}
	return b.String()
}

func (p *packet) packetDump() string {
	var b bytes.Buffer
	fmt.Fprintf(&b, "-- FULL PACKET DATA (%d bytes) ------------------------------------\n%s", len(p.data), hex.Dump(p.data))
	for i, l := range p.layers {
		fmt.Fprintf(&b, "--- Layer %d ---\n%s", i+1, LayerDump(l))
	}
	return b.String()
}

// eagerPacket is a packet implementation that does eager decoding.  Upon
// initial construction, it decodes all the layers it can from packet data.
// eagerPacket implements Packet and PacketBuilder.
type eagerPacket struct {
	packet
}

var errNilDecoder = errors.New("NextDecoder passed nil decoder, probably an unsupported decode type")

func (p *eagerPacket) NextDecoder(next Decoder) error {
	if next == nil {
		return errNilDecoder
	}
	if p.last == nil {
		return errors.New("NextDecoder called, but no layers added yet")
	}
	d := p.last.LayerPayload()
	if len(d) == 0 {
		return nil
	}
	// Since we're eager, immediately call the next decoder.
	return next.Decode(d, p)
}
func (p *eagerPacket) initialDecode(dec Decoder) {
	defer p.recoverDecodeError()
	err := dec.Decode(p.data, p)
	if err != nil {
		p.addFinalDecodeError(err, nil)
	}
}
func (p *eagerPacket) LinkLayer() LinkLayer {
	return p.link
}
func (p *eagerPacket) NetworkLayer() NetworkLayer {
	return p.network
}
func (p *eagerPacket) TransportLayer() TransportLayer {
	return p.transport
}
func (p *eagerPacket) ApplicationLayer() ApplicationLayer {
	return p.application
}
func (p *eagerPacket) ErrorLayer() ErrorLayer {
	return p.failure
}
func (p *eagerPacket) Layers() []Layer {
	return p.layers
}
func (p *eagerPacket) Layer(t LayerType) Layer {
	for _, l := range p.layers {
		if l.LayerType() == t {
			return l
		}
	}
	return nil
}
func (p *eagerPacket) LayerClass(lc LayerClass) Layer {
	for _, l := range p.layers {
		if lc.Contains(l.LayerType()) {
			return l
		}
	}
	return nil
}
func (p *eagerPacket) String() string { return p.packetString() }
func (p *eagerPacket) Dump() string   { return p.packetDump() }

// lazyPacket does lazy decoding on its packet data.  On construction it does
// no initial decoding.  For each function call, it decodes only as many layers
// as are necessary to compute the return value for that function.
// lazyPacket implements Packet and PacketBuilder.
type lazyPacket struct {
	packet
	next Decoder
}

func (p *lazyPacket) NextDecoder(next Decoder) error {
	if next == nil {
		return errNilDecoder
	}
	p.next = next
	return nil
}
func (p *lazyPacket) decodeNextLayer() {
	if p.next == nil {
		return
	}
	d := p.data
	if p.last != nil {
		d = p.last.LayerPayload()
	}
	next := p.next
	p.next = nil
	// We've just set p.next to nil, so if we see we have no data, this should be
	// the final call we get to decodeNextLayer if we return here.
	if len(d) == 0 {
		return
	}
	defer p.recoverDecodeError()
	err := next.Decode(d, p)
	if err != nil {
		p.addFinalDecodeError(err, nil)
	}
}
func (p *lazyPacket) LinkLayer() LinkLayer {
	for p.link == nil && p.next != nil {
		p.decodeNextLayer()
	}
	return p.link
}
func (p *lazyPacket) NetworkLayer() NetworkLayer {
	for p.network == nil && p.next != nil {
		p.decodeNextLayer()
	}
	return p.network
}
func (p *lazyPacket) TransportLayer() TransportLayer {
	for p.transport == nil && p.next != nil {
		p.decodeNextLayer()
	}
	return p.transport
}
func (p *lazyPacket) ApplicationLayer() ApplicationLayer {
	for p.application == nil && p.next != nil {
		p.decodeNextLayer()
	}
	return p.application
}
func (p *lazyPacket) ErrorLayer() ErrorLayer {
	for p.failure == nil && p.next != nil {
		p.decodeNextLayer()
	}
	return p.failure
}
func (p *lazyPacket) Layers() []Layer {
	for p.next != nil {
		p.decodeNextLayer()
	}
	return p.layers
}
func (p *lazyPacket) Layer(t LayerType) Layer {
	for _, l := range p.layers {
		if l.LayerType() == t {
			return l
		}
	}
	numLayers := len(p.layers)
	for p.next != nil {
		p.decodeNextLayer()
		for _, l := range p.layers[numLayers:] {
			if l.LayerType() == t {
				return l
			}
		}
		numLayers = len(p.layers)
	}
	return nil
}
func (p *lazyPacket) LayerClass(lc LayerClass) Layer {
	for _, l := range p.layers {
		if lc.Contains(l.LayerType()) {
			return l
		}
	}
	numLayers := len(p.layers)
	for p.next != nil {
		p.decodeNextLayer()
		for _, l := range p.layers[numLayers:] {
			if lc.Contains(l.LayerType()) {
				return l
			}
		}
		numLayers = len(p.layers)
	}
	return nil
}
func (p *lazyPacket) String() string { p.Layers(); return p.packetString() }
func (p *lazyPacket) Dump() string   { p.Layers(); return p.packetDump() }

// DecodeOptions tells gopacket how to decode a packet.
type DecodeOptions struct {
	// Lazy decoding decodes the minimum number of layers needed to return data
	// for a packet at each function call.  Be careful using this with concurrent
	// packet processors, as each call to packet.* could mutate the packet, and
	// two concurrent function calls could interact poorly.
	Lazy bool
	// NoCopy decoding doesn't copy its input buffer into storage that's owned by
	// the packet.  If you can guarantee that the bytes underlying the slice
	// passed into NewPacket aren't going to be modified, this can be faster.  If
	// there's any chance that those bytes WILL be changed, this will invalidate
	// your packets.
	NoCopy bool
	// SkipDecodeRecovery skips over panic recovery during packet decoding.
	// Normally, when packets decode, if a panic occurs, that panic is captured
	// by a recover(), and a DecodeFailure layer is added to the packet detailing
	// the issue.  If this flag is set, panics are instead allowed to continue up
	// the stack.
	SkipDecodeRecovery bool
	// DecodeStreamsAsDatagrams enables routing of application-level layers in the TCP
	// decoder. If true, we should try to decode layers after TCP in single packets.
	// This is disabled by default because the reassembly package drives the decoding
	// of TCP payload data after reassembly.
	DecodeStreamsAsDatagrams bool
}

// Default decoding provides the safest (but slowest) method for decoding
// packets.  It eagerly processes all layers (so it's concurrency-safe) and it
// copies its input buffer upon creation of the packet (so the packet remains
// valid if the underlying slice is modified.  Both of these take time,
// though, so beware.  If you can guarantee that the packet will only be used
// by one goroutine at a time, set Lazy decoding.  If you can guarantee that
// the underlying slice won't change, set NoCopy decoding.
var Default = DecodeOptions{}

// Lazy is a DecodeOptions with just Lazy set.
var Lazy = DecodeOptions{Lazy: true}

// NoCopy is a DecodeOptions with just NoCopy set.
var NoCopy = DecodeOptions{NoCopy: true}

// DecodeStreamsAsDatagrams is a DecodeOptions with just DecodeStreamsAsDatagrams set.
var DecodeStreamsAsDatagrams = DecodeOptions{DecodeStreamsAsDatagrams: true}

// NewPacket creates a new Packet object from a set of bytes.  The
// firstLayerDecoder tells it how to interpret the first layer from the bytes,
// future layers will be generated from that first layer automatically.
func NewPacket(data []byte, firstLayerDecoder Decoder, options DecodeOptions) Packet {
	if !options.NoCopy {
		dataCopy := make([]byte, len(data))
		copy(dataCopy, data)
		data = dataCopy
	}
	if options.Lazy {
		p := &lazyPacket{
			packet: packet{data: data, decodeOptions: options},
			next:   firstLayerDecoder,
		}
		p.layers = p.initialLayers[:0]
		// Crazy craziness:
		// If the following return statemet is REMOVED, and Lazy is FALSE, then
		// eager packet processing becomes 17% FASTER.  No, there is no logical
		// explanation for this.  However, it's such a hacky micro-optimization that
		// we really can't rely on it.  It appears to have to do with the size the
		// compiler guesses for this function's stack space, since one symptom is
		// that with the return statement in place, we more than double calls to
		// runtime.morestack/runtime.lessstack.  We'll hope the compiler gets better
		// over time and we get this optimization for free.  Until then, we'll have
		// to live with slower packet processing.
		return p
	}
	p := &eagerPacket{
		packet: packet{data: data, decodeOptions: options},
	}
	p.layers = p.initialLayers[:0]
	p.initialDecode(firstLayerDecoder)
	return p
}

// PacketDataSource is an interface for some source of packet data.  Users may
// create their own implementations, or use the existing implementations in
// gopacket/pcap (libpcap, allows reading from live interfaces or from
// pcap files) or gopacket/pfring (PF_RING, allows reading from live
// interfaces).
type PacketDataSource interface {
	// ReadPacketData returns the next packet available from this data source.
	// It returns:
	//  data:  The bytes of an individual packet.
	//  ci:  Metadata about the capture
	//  err:  An error encountered while reading packet data.  If err != nil,
	//    then data/ci will be ignored.
	ReadPacketData() (data []byte, ci CaptureInfo, err error)
}

// ConcatFinitePacketDataSources returns a PacketDataSource that wraps a set
// of internal PacketDataSources, each of which will stop with io.EOF after
// reading a finite number of packets.  The returned PacketDataSource will
// return all packets from the first finite source, followed by all packets from
// the second, etc.  Once all finite sources have returned io.EOF, the returned
// source will as well.
func ConcatFinitePacketDataSources(pds ...PacketDataSource) PacketDataSource {
	c := concat(pds)
	return &c
}

type concat []PacketDataSource

func (c *concat) ReadPacketData() (data []byte, ci CaptureInfo, err error) {
	for len(*c) > 0 {
		data, ci, err = (*c)[0].ReadPacketData()
		if err == io.EOF {
			*c = (*c)[1:]
			continue
		}
		return
	}
	return nil, CaptureInfo{}, io.EOF
}

// ZeroCopyPacketDataSource is an interface to pull packet data from sources
// that allow data to be returned without copying to a user-controlled buffer.
// It's very similar to PacketDataSource, except that the caller must be more
// careful in how the returned buffer is handled.
type ZeroCopyPacketDataSource interface {
	// ZeroCopyReadPacketData returns the next packet available from this data source.
	// It returns:
	//  data:  The bytes of an individual packet.  Unlike with
	//    PacketDataSource's ReadPacketData, the slice returned here points
	//    to a buffer owned by the data source.  In particular, the bytes in
	//    this buffer may be changed by future calls to
	//    ZeroCopyReadPacketData.  Do not use the returned buffer after
	//    subsequent ZeroCopyReadPacketData calls.
	//  ci:  Metadata about the capture
	//  err:  An error encountered while reading packet data.  If err != nil,
	//    then data/ci will be ignored.
	ZeroCopyReadPacketData() (data []byte, ci CaptureInfo, err error)
}

// PacketSource reads in packets from a PacketDataSource, decodes them, and
// returns them.
//
// There are currently two different methods for reading packets in through
// a PacketSource:
//
// Reading With Packets Function
//
// This method is the most convenient and easiest to code, but lacks
// flexibility.  Packets returns a 'chan Packet', then asynchronously writes
// packets into that channel.  Packets uses a blocking channel, and closes
// it if an io.EOF is returned by the underlying PacketDataSource.  All other
// PacketDataSource errors are ignored and discarded.
//  for packet := range packetSource.Packets() {
//    ...
//  }
//
// Reading With NextPacket Function
//
// This method is the most flexible, and exposes errors that may be
// encountered by the underlying PacketDataSource.  It's also the fastest
// in a tight loop, since it doesn't have the overhead of a channel
// read/write.  However, it requires the user to handle errors, most
// importantly the io.EOF error in cases where packets are being read from
// a file.
//  for {
//    packet, err := packetSource.NextPacket()
//    if err == io.EOF {
//      break
//    } else if err != nil {
//      log.Println("Error:", err)
//      continue
//    }
//    handlePacket(packet)  // Do something with each packet.
//  }
type PacketSource struct {
	source  PacketDataSource
	decoder Decoder
	// DecodeOptions is the set of options to use for decoding each piece
	// of packet data.  This can/should be changed by the user to reflect the
	// way packets should be decoded.
	DecodeOptions
	c chan Packet
}

// NewPacketSource creates a packet data source.
func NewPacketSource(source PacketDataSource, decoder Decoder) *PacketSource {
	return &PacketSource{
		source:  source,
		decoder: decoder,
	}
}

// NextPacket returns the next decoded packet from the PacketSource.  On error,
// it returns a nil packet and a non-nil error.
func (p *PacketSource) NextPacket() (Packet, error) {
	data, ci, err := p.source.ReadPacketData()
	if err != nil {
		return nil, err
	}
	packet := NewPacket(data, p.decoder, p.DecodeOptions)
	m := packet.Metadata()
	m.CaptureInfo = ci
	m.Truncated = m.Truncated || ci.CaptureLength < ci.Length
	return packet, nil
}

// packetsToChannel reads in all packets from the packet source and sends them
// to the given channel.  When it receives an error, it ignores it.  When it
// receives an io.EOF, it closes the channel.
func (p *PacketSource) packetsToChannel() {
	defer close(p.c)
	for {
		packet, err := p.NextPacket()
		if err == io.EOF {
			return
		} else if err == nil {
			p.c <- packet
		}
	}
}

// Packets returns a channel of packets, allowing easy iterating over
// packets.  Packets will be asynchronously read in from the underlying
// PacketDataSource and written to the returned channel.  If the underlying
// PacketDataSource returns an io.EOF error, the channel will be closed.
// If any other error is encountered, it is ignored.
//
//  for packet := range packetSource.Packets() {
//    handlePacket(packet)  // Do something with each packet.
//  }
//
// If called more than once, returns the same channel.
func (p *PacketSource) Packets() chan Packet {
	if p.c == nil {
		p.c = make(chan Packet, 1000)
		go p.packetsToChannel()
	}
	return p.c
}