1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
# Sysrepo plugin for hicn-plugin (2019)
These plugins serve as a data management agent. They provide yang models via NETCONF to allow the management of hicn-light, and hicn-plugin which runs in VPP instance from out-of-box.
## Software Requirement
- VPP
- sysrepo
- hicn-plugin
- hicn-light
## hICN yang model
You can install the yang model using the following bash script:
EXIT_CODE=0
command -v sysrepoctl > /dev/null
if [ $? != 0 ]; then
echo "Could not find command \"sysrepoctl\"."
exit ${EXIT_CODE}
else
sysrepoctl --install --yang=path_to_hicn_yang_model
fi
hicn.yang can be found in the yang-model. It consists of two container nodes: hicn-conf and hicn-state. One is used to hold the configuration data (i.e., hicn-conf) and one for providing the state data (i.e., hicn-state). The hicn-conf has one node, params, which contains the hICN configuration parameters. Controler can configure these parameters through the edit-config RPC call. This node can be used to enable and to initialize the hicn-plugin in VPP instance. Hicn-state container is used to provide the state data to the controler. It consists of state, strategy, strategies, route, and face-ip-params nodes with the coresponding leaves. In hicn model variety of RPCs are provided to allow controler to communicate with hicn-plugin as well as update the state data in hicn-state. Here you can find the schematic view of the described hicn model:
module: hicn
+--rw hicn-conf
| +--rw params
| +--rw enable_disable? boolean
| +--rw pit_max_size? int32
| +--rw cs_max_size? int32
| +--rw cs_reserved_app? int32
| +--rw pit_dflt_lifetime_sec? float
| +--rw pit_max_lifetime_sec? float
| +--rw pit_min_lifetime_sec? float
+--ro hicn-state
+--ro states
| +--ro pkts_processed? uint64
| +--ro pkts_interest_count? uint64
| +--ro pkts_data_count? uint64
| +--ro pkts_from_cache_count? uint64
| +--ro pkts_no_pit_count? uint64
| +--ro pit_expired_count? uint64
| +--ro cs_expired_count? uint64
| +--ro cs_lru_count? uint64
| +--ro pkts_drop_no_buf? uint64
| +--ro interests_aggregated? uint64
| +--ro interests_retx? uint64
| +--ro interests_hash_collision? uint64
| +--ro pit_entries_count? uint64
| +--ro cs_entries_count? uint64
| +--ro cs_entries_ntw_count? uint64
+--ro strategy
| +--ro description? uint8
+--ro route
| +--ro faceids? uint16
| +--ro strategy_id? uint32
+--ro strategies
| +--ro n_strategies? uint8
| +--ro strategy_id? uint32
+--ro face-ip-params
+--ro nh_addr? uint64
+--ro swif? uint32
+--ro flags? uint32
To setup the startup configuration you can use the following script:
EXIT_CODE=0
command -v sysrepocfg > /dev/null
if [ $? != 0 ]; then
echo "Could not find command \"sysrepocfg\"."
exit ${EXIT_CODE}
else
sysrepocfg -d startup -i path_to_startup_xml -f xml hicn
fi
startup.xml is placed in the yang-model. Here you can find the content:
<hicn-conf xmlns="urn:sysrepo:hicn">
<params>
<enable_disable>false</enable_disable>
<pit_max_size>-1</pit_max_size>
<cs_max_size>-1</cs_max_size>
<cs_reserved_app>-1</cs_reserved_app>
<pit_dflt_lifetime_sec>-1</pit_dflt_lifetime_sec>
<pit_max_lifetime_sec>-1</pit_max_lifetime_sec>
<pit_min_lifetime_sec>-1</pit_min_lifetime_sec>
</params>
</hicn-conf>
As can be seen, it contains the leaves of the params in hicn-conf node which is used as the startup configuration. This configuration can be changed through the controler by subscribing which changes the target to the running state. hicn yang model provides a list of RPCs which allows controler to communicate directly with the hicn-plugin. This RPCs may also cause the modification in state data. Here you can find the list of RPCs:
rpcs:
+---x node-params-set
| +---w input
| +---w enable_disable? boolean
| +---w pit_max_size? int32
| +---w cs_max_size? int32
| +---w cs_reserved_app? int32
| +---w pit_dflt_lifetime_sec? float
| +---w pit_max_lifetime_sec? float
| +---w pit_min_lifetime_sec? float
+---x node-params-get
+---x node-stat-get
+---x strategy-get
| +---w input
| +---w strategy_id? uint32
+---x strategies-get
+---x route-get
| +---w input
| +---w prefix0? uint64
| +---w prefix1? uint64
| +---w len? uint8
+---x route-del
| +---w input
| +---w prefix0? uint64
| +---w prefix1? uint64
| +---w len? uint8
+---x route-nhops-add
| +---w input
| +---w prefix0? uint64
| +---w prefix1? uint64
| +---w len? uint8
| +---w face_ids0? uint32
| +---w face_ids1? uint32
| +---w face_ids2? uint32
| +---w face_ids3? uint32
| +---w face_ids4? uint32
| +---w face_ids5? uint32
| +---w face_ids6? uint32
| +---w n_faces? uint8
+---x route-nhops-del
| +---w input
| +---w prefix0? uint64
| +---w prefix1? uint64
| +---w len? uint8
| +---w faceid? uint16
+---x face-ip-params-get
| +---w input
| +---w faceid? uint16
+---x face-ip-add
| +---w input
| +---w nh_addr0? uint64
| +---w nh_addr1? uint64
| +---w swif? uint32
+---x face-ip-del
| +---w input
| +---w faceid? uint16
+---x punting-add
| +---w input
| +---w prefix0? uint64
| +---w prefix1? uint64
| +---w len? uint8
| +---w swif? uint32
+---x punting-del
+---w input
+---w prefix0? uint64
+---w prefix1? uint64
+---w len? uint8
+---w swif? uint32
In order to run different RPCs from controler you can use the examples in the controler_rpcs_instances.xml in the yang-model. Here you can find the content:
<node-params-get xmlns="urn:sysrepo:hicn"/>
<node-stat-get xmlns="urn:sysrepo:hicn"/>
<strategy-get xmlns="urn:sysrepo:hicn">
<strategy_id>0</strategy_id>
</strategy-get>
<strategies-get xmlns="urn:sysrepo:hicn"/>
<route-get xmlns="urn:sysrepo:hicn">
<prefix0>10</prefix0>
<prefix1>20</prefix1>
<len>30</len>
</route-get>
<route-del xmlns="urn:sysrepo:hicn">
<prefix0>10</prefix0>
<prefix1>20</prefix1>
<len>30</len>
</route-del>
<route-nhops-add xmlns="urn:sysrepo:hicn">
<prefix0>10</prefix0>
<prefix1>20</prefix1>
<len>30</len>
<face_ids0>40</face_ids0>
<face_ids1>50</face_ids1>
<face_ids2>60</face_ids2>
<face_ids3>70</face_ids3>
<face_ids4>80</face_ids4>
<face_ids5>90</face_ids5>
<face_ids6>100</face_ids6>
<n_faces>110</n_faces>
</route-nhops-add>
<route-nhops-del xmlns="urn:sysrepo:hicn">
<prefix0>10</prefix0>
<prefix1>20</prefix1>
<len>30</len>
<faceid>40</faceid>
</route-nhops-del>
<face-ip-params-get xmlns="urn:sysrepo:hicn">
<faceid>10</faceid>
</face-ip-params-get>
<face-ip-add xmlns="urn:sysrepo:hicn">
<nh_addr0>10</nh_addr0>
<nh_addr1>20</nh_addr1>
<swif>30</swif>
</face-ip-add>
<face-ip-del xmlns="urn:sysrepo:hicn">
<faceid>0</faceid>
</face-ip-del>
<punting-add xmlns="urn:sysrepo:hicn">
<prefix0>10</prefix0>
<prefix1>20</prefix1>
<len>30</len>
<swif>40</swif>
</punting-add>
<punting-del xmlns="urn:sysrepo:hicn">
<prefix0>10</prefix0>
<prefix1>20</prefix1>
<len>30</len>
<swif>40</swif>
</punting-del>
## Run the plugin
Firstly, verify the plugin and binary libraries are located correctly, then run the vpp through (service vpp start). Next, run the sysrepo daemon (sysrepod), for debug mode: sysrepo -d -l 4 which runs with high verbosity. Then, run the sysrepo plugin (sysrepo-plugind), for debug mode: sysrep-plugind -d -l 4 which runs with high verbosity. Now, the hicn sysrepo plugin is loaded. Then, run the netopeer2-server which serves as NETCONF server.
## Connect from netopeer2-cli
In order to connect through the netopeer client run the netopeer2-cli. Then, follow these steps:
connect --host XXX --login XXX
--> get (you can get the configuration and operational data)
--> get-config (you can get the configuratoin data)
--> edit-config --target running --config (you can modify the configuration but it needs an xml configuration input. For example,
<hicn-conf xmlns="urn:sysrepo:hicn">
<params>
<enable_disable>false</enable_disable>
<pit_max_size>-1</pit_max_size>
<cs_max_size>-1</cs_max_size>
<cs_reserved_app>-1</cs_reserved_app>
<pit_dflt_lifetime_sec>-1</pit_dflt_lifetime_sec>
<pit_max_lifetime_sec>-1</pit_max_lifetime_sec>
<pit_min_lifetime_sec>-1</pit_min_lifetime_sec>
</params>
</hicn-conf>
)
--> user-rpc (you can call one of the rpc proposed by hicn model but it needs an xml input, you can pick one in controler_rpcs_instances.xml)
## Connect from OpenDayligh (ODL) controller
In order to connect througt the OpenDaylight follow these procedure:
- run karaf distribution (./opendayligh_installation_folder/bin/karaf)
- install the required feature list in DOL (feature:install odl-netconf-server odl-netconf-connector odl-restconf-all odl-netconf-topology or
odl-netconf-clustered-topology)
- run a rest client program (e.g., postman or RESTClient)
- mount the remote netopeer2-server to the OpenDaylight by the following REST API:
PUT http://localhost:8181/restconf/config/network-topology:network-topology/topology/topology-netconf/node/hicn-node
with the following body
<node xmlns="urn:TBD:params:xml:ns:yang:network-topology">
<node-id>hicn-node</node-id>
<host xmlns="urn:opendaylight:netconf-node-topology">Remote_NETCONF_SERVER_IP</host>
<port xmlns="urn:opendaylight:netconf-node-topology">830</port>
<username xmlns="urn:opendaylight:netconf-node-topology">username</username>
<password xmlns="urn:opendaylight:netconf-node-topology">password</password>
<tcp-only xmlns="urn:opendaylight:netconf-node-topology">false</tcp-only>
<keepalive-delay xmlns="urn:opendaylight:netconf-node-topology">1</keepalive-delay>
</node>
Note that the header files must be set to Content-Type: application/xml, Accept: application/xml. There are more options which can be set but for simplicity we keep a short configuration to mount the remote node.
- send the operation through the following REST API:
POST http://localhost:8181/restconf/operations/network-topology:network-topology/topology/topology-netconf/node/hicn-node/yang-ext:mount/ietf-netconf:edit-config
The body can be used the same as edit-config in netopeer2-cli.
## Connect from Network Services Orchestrator (NSO)
To connect NSO to the netopeer2-server, first, you need to write a NED package for your device. The procudeure to create NED for hicn is explaned in the following:
Place hicn.yang model in a folder called hicn-yang-model, and follow these steps:
- ncs-make-package --netconf-ned ./hicn-yang-model ./hicn-nso
- cd hicn-nso/src; make
- ncs-setup --ned-package ./hicn-nso --dest ./hicn-nso-project
- cd hicn-nso-project
- ncs
- ncs_cli -C -u admin
- configure
- devices authgroups group authhicn default-map remote-name user_name remote-password password
- devices device hicn address IP_device port 830 authgroup authhicn device-type netconf
- state admin-state unlocked
- commit
- ssh fetch-host-keys
At this point, we are able to connect to the remote device.
## Release note
The current version is compatible with the 19.01 VPP stable and sysrepo 0.7.7.
|