1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*
* Copyright (c) 2021 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <glog/logging.h>
#include <hicn/transport/core/global_object_pool.h>
#include <protocols/fec/fec.h>
#include <protocols/fec/rs.h>
#include <cassert>
namespace transport {
namespace protocol {
namespace fec {
BlockCode::BlockCode(uint32_t k, uint32_t n, uint32_t seq_offset,
struct fec_parms *code, rs ¶ms)
: Packets(),
k_(k),
n_(n),
seq_offset_(seq_offset),
code_(code),
max_buffer_size_(0),
current_block_size_(0),
to_decode_(false),
params_(params) {
sorted_index_.reserve(n);
UNUSED(seq_offset_);
}
bool BlockCode::addRepairSymbol(const fec::buffer &packet, uint32_t i,
uint32_t offset) {
// Get index
to_decode_ = true;
DLOG_IF(INFO, VLOG_IS_ON(4)) << "Adding symbol of size " << packet->length();
return addSymbol(packet, i, offset,
packet->length() - sizeof(fec_header) - offset);
}
bool BlockCode::addSourceSymbol(const fec::buffer &packet, uint32_t i,
uint32_t offset) {
DLOG_IF(INFO, VLOG_IS_ON(4)) << "Adding source symbol of size "
<< packet->length() << ", offset " << offset;
return addSymbol(packet, i, offset, packet->length() - offset);
}
bool BlockCode::addSymbol(const fec::buffer &packet, uint32_t i,
uint32_t offset, std::size_t size) {
if (size > max_buffer_size_) {
max_buffer_size_ = size;
}
operator[](current_block_size_++) = std::make_tuple(i, packet, offset);
if (current_block_size_ >= k_) {
if (to_decode_) {
decode();
} else {
encode();
}
clear();
return false;
}
return true;
}
void BlockCode::encode() {
gf *data[n_];
uint32_t base = std::get<0>(operator[](0));
// Set packet length in first 2 bytes
for (uint32_t i = 0; i < k_; i++) {
auto &packet = std::get<1>(operator[](i));
auto offset = std::get<2>(operator[](i));
auto ret =
packet->ensureCapacityAndFillUnused(max_buffer_size_ + offset, 0);
if (TRANSPORT_EXPECT_FALSE(ret == false)) {
throw errors::RuntimeException(
"Provided packet is not suitable to be used as FEC source packet. "
"Aborting.");
}
// Buffers should hold 2 *after* the padding, in order to be
// able to set the length for the encoding operation.
// packet->trimStart(offset);
uint16_t *length = reinterpret_cast<uint16_t *>(packet->writableData() +
max_buffer_size_ + offset);
auto buffer_length = packet->length() - offset;
*length = htons(buffer_length);
DLOG_IF(INFO, VLOG_IS_ON(4)) << "Current buffer size: " << packet->length();
data[i] = packet->writableData() + offset;
}
// Finish to fill source block with the buffers to hold the repair symbols
auto length = max_buffer_size_ + sizeof(fec_header) + LEN_SIZE_BYTES;
for (uint32_t i = k_; i < n_; i++) {
buffer packet;
if (!params_.buffer_callback_) {
// If no callback is installed, let's allocate a buffer from global pool
packet = core::PacketManager<>::getInstance().getMemBuf();
packet->append(length);
} else {
// Otherwise let's ask a buffer to the caller.
packet = params_.buffer_callback_(length);
}
fec_header *fh = reinterpret_cast<fec_header *>(packet->writableData());
fh->setSeqNumberBase(base);
fh->setNFecSymbols(n_ - k_);
fh->setEncodedSymbolId(i);
fh->setSourceBlockLen(n_);
packet->trimStart(sizeof(fec_header));
DLOG_IF(INFO, VLOG_IS_ON(4)) << "Current symbol size: " << packet->length();
data[i] = packet->writableData();
operator[](i) = std::make_tuple(i, std::move(packet), uint32_t(0));
}
// Generate repair symbols and put them in corresponding buffers
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Calling encode with max_buffer_size_ = " << max_buffer_size_;
for (uint32_t i = k_; i < n_; i++) {
fec_encode(code_, data, data[i], i, max_buffer_size_ + LEN_SIZE_BYTES);
}
// Re-include header in repair packets
for (uint32_t i = k_; i < n_; i++) {
auto &packet = std::get<1>(operator[](i));
packet->prepend(sizeof(fec_header));
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Produced repair symbol of size = " << packet->length();
}
}
void BlockCode::decode() {
gf *data[k_];
uint32_t index[k_];
for (uint32_t i = 0; i < k_; i++) {
auto &packet = std::get<1>(operator[](i));
index[i] = std::get<0>(operator[](i));
auto offset = std::get<2>(operator[](i));
sorted_index_[i] = index[i];
if (index[i] < k_) {
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "DECODE SOURCE - index " << index[i]
<< " - Current buffer size: " << packet->length();
// This is a source packet. We need to fill
// additional space to 0 and append the length
// Buffers should hold 2 bytes at the end, in order to be
// able to set the length for the encoding operation
packet->trimStart(offset);
packet->ensureCapacityAndFillUnused(max_buffer_size_, 0);
uint16_t *length = reinterpret_cast<uint16_t *>(
packet->writableData() + max_buffer_size_ - LEN_SIZE_BYTES);
*length = htons(packet->length());
} else {
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "DECODE SYMBOL - index " << index[i]
<< " - Current buffer size: " << packet->length();
packet->trimStart(sizeof(fec_header) + offset);
}
data[i] = packet->writableData();
}
// We decode the source block
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Calling decode with max_buffer_size_ = " << max_buffer_size_;
fec_decode(code_, data, reinterpret_cast<int *>(index), max_buffer_size_);
// Find the index in the block for recovered packets
for (uint32_t i = 0; i < k_; i++) {
if (index[i] != i) {
for (uint32_t j = 0; j < k_; j++)
if (sorted_index_[j] == uint32_t(index[i])) {
sorted_index_[j] = i;
}
}
}
// Reorder block by index with in-place sorting
for (uint32_t i = 0; i < k_; i++) {
for (uint32_t j = sorted_index_[i]; j != i; j = sorted_index_[i]) {
std::swap(sorted_index_[j], sorted_index_[i]);
std::swap(operator[](j), operator[](i));
}
}
// Adjust length according to the one written in the source packet
for (uint32_t i = 0; i < k_; i++) {
auto &packet = std::get<1>(operator[](i));
uint16_t *length = reinterpret_cast<uint16_t *>(
packet->writableData() + max_buffer_size_ - LEN_SIZE_BYTES);
packet->setLength(ntohs(*length));
}
}
void BlockCode::clear() {
current_block_size_ = 0;
max_buffer_size_ = 0;
sorted_index_.clear();
to_decode_ = false;
}
void rs::MatrixDeleter::operator()(struct fec_parms *params) {
fec_free(params);
}
rs::Codes rs::createCodes() {
Codes ret;
#define _(name, k, n) \
ret.emplace(std::make_pair(k, n), Matrix(fec_new(k, n), MatrixDeleter()));
foreach_rs_fec_type
#undef _
return ret;
}
rs::Codes rs::codes_ = createCodes();
rs::rs(uint32_t k, uint32_t n, uint32_t seq_offset)
: k_(k), n_(n), seq_offset_(seq_offset % n) {}
RSEncoder::RSEncoder(uint32_t k, uint32_t n, uint32_t seq_offset)
: rs(k, n, seq_offset),
current_code_(codes_[std::make_pair(k, n)].get()),
source_block_(k_, n_, seq_offset_, current_code_, *this) {}
void RSEncoder::consume(const fec::buffer &packet, uint32_t index,
uint32_t offset) {
if (!source_block_.addSourceSymbol(packet, index, offset)) {
std::vector<std::pair<uint32_t, buffer>> repair_packets;
for (uint32_t i = k_; i < n_; i++) {
repair_packets.emplace_back(std::move(std::get<0>(source_block_[i])),
std::move(std::get<1>(source_block_[i])));
}
fec_callback_(repair_packets);
}
}
void RSEncoder::onPacketProduced(core::ContentObject &content_object,
uint32_t offset) {
consume(content_object.shared_from_this(),
content_object.getName().getSuffix(), offset);
}
RSDecoder::RSDecoder(uint32_t k, uint32_t n, uint32_t seq_offset)
: rs(k, n, seq_offset) {}
void RSDecoder::recoverPackets(SourceBlocks::iterator &src_block_it) {
DLOG_IF(INFO, VLOG_IS_ON(4)) << "recoverPackets for " << k_;
auto &src_block = src_block_it->second;
std::vector<std::pair<uint32_t, buffer>> source_packets(k_);
for (uint32_t i = 0; i < src_block.getK(); i++) {
source_packets[i] = std::make_pair(src_block_it->first + i,
std::move(std::get<1>(src_block[i])));
}
setProcessed(src_block_it->first);
fec_callback_(source_packets);
processed_source_blocks_.emplace(src_block_it->first);
auto it = parked_packets_.find(src_block_it->first);
if (it != parked_packets_.end()) {
parked_packets_.erase(it);
}
src_blocks_.erase(src_block_it);
}
void RSDecoder::consumeSource(const fec::buffer &packet, uint32_t index,
uint32_t offset) {
// Normalize index
assert(index >= seq_offset_);
auto i = (index - seq_offset_) % n_;
// Get base
uint32_t base = index - i;
if (processed(base)) {
return;
}
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Decoder consume called for source symbol. BASE = " << base
<< ", index = " << index << " and i = " << i;
// check if a source block already exist for this symbol. If it does not
// exist, we lazily park this packet until we receive a repair symbol for the
// same block. This is done for 2 reason:
// 1) If we receive all the source packets of a block, we do not need to
// recover anything.
// 2) Sender may change n and k at any moment, so we construct the source
// block based on the (n, k) values written in the fec header. This is
// actually not used right now, since we use fixed value of n and k passed
// at construction time, but it paves the ground for a more dynamic
// protocol that may come in the future.
auto it = src_blocks_.find(base);
if (it != src_blocks_.end()) {
auto ret = it->second.addSourceSymbol(packet, i, offset);
if (!ret) {
recoverPackets(it);
}
} else {
DLOG_IF(INFO, VLOG_IS_ON(4)) << "Adding to parked source packets";
auto ret = parked_packets_.emplace(
base, std::vector<std::pair<buffer, uint32_t>>());
ret.first->second.emplace_back(packet, i);
if (ret.first->second.size() >= k_) {
setProcessed(ret.first->first);
parked_packets_.erase(ret.first);
}
}
}
void RSDecoder::consumeRepair(const fec::buffer &packet, uint32_t offset) {
// Repair symbol! Get index and base source block.
fec_header *h =
reinterpret_cast<fec_header *>(packet->writableData() + offset);
auto i = h->getEncodedSymbolId();
auto base = h->getSeqNumberBase();
auto n = h->getSourceBlockLen();
auto k = n - h->getNFecSymbols();
if (processed(base)) {
return;
}
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Decoder consume called for repair symbol. BASE = " << base
<< ", index = " << base + i << " and i = " << i << ". K=" << k
<< ", N=" << n;
// check if a source block already exist for this symbol
auto it = src_blocks_.find(base);
if (it == src_blocks_.end()) {
// Create new source block
auto code_it = codes_.find(std::make_pair(k, n));
if (code_it == codes_.end()) {
LOG(ERROR) << "Code for k = " << k << " and n = " << n
<< " does not exist.";
return;
}
auto emplace_result = src_blocks_.emplace(
base, BlockCode(k, n, seq_offset_, code_it->second.get(), *this));
it = emplace_result.first;
// Check in the parked packets and insert any packet that is part of this
// source block
auto it2 = parked_packets_.find(base);
if (it2 != parked_packets_.end()) {
for (auto &packet_index : it2->second) {
auto ret = it->second.addSourceSymbol(packet_index.first,
packet_index.second, offset);
if (!ret) {
recoverPackets(it);
// Finish to delete packets in same source block that were
// eventually not used
return;
}
}
}
}
auto ret = it->second.addRepairSymbol(packet, i, offset);
if (!ret) {
recoverPackets(it);
}
}
void RSDecoder::onDataPacket(core::ContentObject &content_object,
uint32_t offset) {
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Calling fec for data packet " << content_object.getName()
<< ". Offset: " << offset;
auto suffix = content_object.getName().getSuffix();
if (isSymbol(suffix)) {
consumeRepair(content_object.shared_from_this(), offset);
} else {
consumeSource(content_object.shared_from_this(), suffix, offset);
}
}
} // namespace fec
} // namespace protocol
} // namespace transport
|