1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/*
* Copyright (c) 2017-2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hicn/transport/core/global_object_pool.h>
#include <implementation/socket_producer.h>
#include <protocols/prod_protocol_rtc.h>
#include <protocols/rtc/rtc_consts.h>
#include <stdlib.h>
#include <time.h>
#include <unordered_set>
namespace transport {
namespace protocol {
RTCProductionProtocol::RTCProductionProtocol(
implementation::ProducerSocket *icn_socket)
: ProductionProtocol(icn_socket),
current_seg_(1),
produced_bytes_(0),
produced_packets_(0),
max_packet_production_(1),
bytes_production_rate_(0),
packets_production_rate_(0),
last_round_(std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count()),
allow_delayed_nacks_(false),
queue_timer_on_(false),
consumer_in_sync_(false),
on_consumer_in_sync_(nullptr) {
srand((unsigned int)time(NULL));
prod_label_ = rand() % 256;
interests_queue_timer_ =
std::make_unique<asio::steady_timer>(portal_->getIoService());
round_timer_ = std::make_unique<asio::steady_timer>(portal_->getIoService());
setOutputBufferSize(10000);
scheduleRoundTimer();
}
RTCProductionProtocol::~RTCProductionProtocol() {}
void RTCProductionProtocol::registerNamespaceWithNetwork(
const Prefix &producer_namespace) {
ProductionProtocol::registerNamespaceWithNetwork(producer_namespace);
flow_name_ = producer_namespace.getName();
auto family = flow_name_.getAddressFamily();
switch (family) {
case AF_INET6:
header_size_ = (uint32_t)Packet::getHeaderSizeFromFormat(HF_INET6_TCP);
break;
case AF_INET:
header_size_ = (uint32_t)Packet::getHeaderSizeFromFormat(HF_INET_TCP);
break;
default:
throw errors::RuntimeException("Unknown name format.");
}
}
void RTCProductionProtocol::scheduleRoundTimer() {
round_timer_->expires_from_now(
std::chrono::milliseconds(rtc::PRODUCER_STATS_INTERVAL));
round_timer_->async_wait([this](std::error_code ec) {
if (ec) return;
updateStats();
});
}
void RTCProductionProtocol::updateStats() {
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
uint64_t duration = now - last_round_;
if (duration == 0) duration = 1;
double per_second = rtc::MILLI_IN_A_SEC / duration;
uint32_t prev_packets_production_rate = packets_production_rate_;
bytes_production_rate_ = (uint32_t)ceil((double)produced_bytes_ * per_second);
packets_production_rate_ = (uint32_t)ceil((double)produced_packets_ * per_second);
TRANSPORT_LOGD("Updating production rate: produced_bytes_ = %u bps = %u",
produced_bytes_, bytes_production_rate_);
// update the production rate as soon as it increases by 10% with respect to
// the last round
max_packet_production_ =
produced_packets_ + (uint32_t)ceil((double)produced_packets_ * 0.1);
if (max_packet_production_ < rtc::WIN_MIN)
max_packet_production_ = rtc::WIN_MIN;
if (packets_production_rate_ != 0) {
allow_delayed_nacks_ = false;
} else if (prev_packets_production_rate == 0) {
// at least 2 rounds with production rate = 0
allow_delayed_nacks_ = true;
}
// check if the production rate is decreased. if yes send nacks if needed
if (prev_packets_production_rate < packets_production_rate_) {
sendNacksForPendingInterests();
}
produced_bytes_ = 0;
produced_packets_ = 0;
last_round_ = now;
scheduleRoundTimer();
}
uint32_t RTCProductionProtocol::produceStream(
const Name &content_name, std::unique_ptr<utils::MemBuf> &&buffer,
bool is_last, uint32_t start_offset) {
throw errors::NotImplementedException();
}
uint32_t RTCProductionProtocol::produceStream(const Name &content_name,
const uint8_t *buffer,
size_t buffer_size, bool is_last,
uint32_t start_offset) {
throw errors::NotImplementedException();
}
void RTCProductionProtocol::produce(ContentObject &content_object) {
throw errors::NotImplementedException();
}
uint32_t RTCProductionProtocol::produceDatagram(
const Name &content_name, std::unique_ptr<utils::MemBuf> &&buffer) {
std::size_t buffer_size = buffer->length();
if (TRANSPORT_EXPECT_FALSE(buffer_size == 0)) return 0;
uint32_t data_packet_size;
socket_->getSocketOption(interface::GeneralTransportOptions::DATA_PACKET_SIZE,
data_packet_size);
if (TRANSPORT_EXPECT_FALSE((buffer_size + header_size_ +
rtc::DATA_HEADER_SIZE) > data_packet_size)) {
return 0;
}
auto content_object =
core::PacketManager<>::getInstance().getPacket<ContentObject>();
// add rtc header to the payload
struct rtc::data_packet_t header;
content_object->appendPayload((const uint8_t *)&header,
rtc::DATA_HEADER_SIZE);
content_object->appendPayload(buffer->data(), buffer->length());
std::shared_ptr<ContentObject> co = std::move(content_object);
// schedule actual sending on internal thread
portal_->getIoService().dispatch(
[this, content_object{std::move(co)}, content_name]() mutable {
produceInternal(std::move(content_object), content_name);
});
return 1;
}
void RTCProductionProtocol::produceInternal(
std::shared_ptr<ContentObject> &&content_object, const Name &content_name) {
// set rtc header
struct rtc::data_packet_t *data_pkt =
(struct rtc::data_packet_t *)content_object->getPayload()->data();
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
data_pkt->setTimestamp(now);
data_pkt->setProductionRate(bytes_production_rate_);
// set hicn stuff
Name n(content_name);
content_object->setName(n.setSuffix(current_seg_));
content_object->setLifetime(500); // XXX this should be set by the APP
content_object->setPathLabel(prod_label_);
// update stats
produced_bytes_ += (uint32_t)(
content_object->headerSize() + content_object->payloadSize());
produced_packets_++;
if (produced_packets_ >= max_packet_production_) {
// in this case all the pending interests may be used to accomodate the
// sudden increase in the production rate. calling the updateStats we will
// notify all the clients
round_timer_->cancel();
updateStats();
}
TRANSPORT_LOGD("Sending content object: %s", n.toString().c_str());
output_buffer_.insert(content_object);
if (*on_content_object_in_output_buffer_) {
on_content_object_in_output_buffer_->operator()(*socket_->getInterface(),
*content_object);
}
portal_->sendContentObject(*content_object);
if (*on_content_object_output_) {
on_content_object_output_->operator()(*socket_->getInterface(),
*content_object);
}
// remove interests from the interest cache if it exists
removeFromInterestQueue(current_seg_);
current_seg_ = (current_seg_ + 1) % rtc::MIN_PROBE_SEQ;
}
void RTCProductionProtocol::onInterest(Interest &interest) {
uint32_t interest_seg = interest.getName().getSuffix();
uint32_t lifetime = interest.getLifetime();
if (interest_seg == 0) {
// first packet from the consumer, reset sync state
consumer_in_sync_ = false;
}
if (*on_interest_input_) {
on_interest_input_->operator()(*socket_->getInterface(), interest);
}
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
if (interest_seg > rtc::MIN_PROBE_SEQ) {
TRANSPORT_LOGD("received probe %u", interest_seg);
sendNack(interest_seg);
return;
}
TRANSPORT_LOGD("received interest %u", interest_seg);
const std::shared_ptr<ContentObject> content_object =
output_buffer_.find(interest);
if (content_object) {
if (*on_interest_satisfied_output_buffer_) {
on_interest_satisfied_output_buffer_->operator()(*socket_->getInterface(),
interest);
}
if (*on_content_object_output_) {
on_content_object_output_->operator()(*socket_->getInterface(),
*content_object);
}
TRANSPORT_LOGD("Send content %u (onInterest)",
content_object->getName().getSuffix());
portal_->sendContentObject(*content_object);
return;
} else {
if (*on_interest_process_) {
on_interest_process_->operator()(*socket_->getInterface(), interest);
}
}
// if the production rate 0 use delayed nacks
if (allow_delayed_nacks_ && interest_seg >= current_seg_) {
uint64_t next_timer = ~0;
if (!timers_map_.empty()) {
next_timer = timers_map_.begin()->first;
}
uint64_t expiration = now + rtc::SENTINEL_TIMER_INTERVAL;
addToInterestQueue(interest_seg, expiration);
// here we have at least one interest in the queue, we need to start or
// update the timer
if (!queue_timer_on_) {
// set timeout
queue_timer_on_ = true;
scheduleQueueTimer(timers_map_.begin()->first - now);
} else {
// re-schedule the timer because a new interest will expires sooner
if (next_timer > timers_map_.begin()->first) {
interests_queue_timer_->cancel();
scheduleQueueTimer(timers_map_.begin()->first - now);
}
}
return;
}
if (queue_timer_on_) {
// the producer is producing. Send nacks to packets that will expire before
// the data production and remove the timer
queue_timer_on_ = false;
interests_queue_timer_->cancel();
sendNacksForPendingInterests();
}
uint32_t max_gap = (uint32_t)floor(
(double)((double)((double)lifetime *
rtc::INTEREST_LIFETIME_REDUCTION_FACTOR /
rtc::MILLI_IN_A_SEC) *
(double)packets_production_rate_));
if (interest_seg < current_seg_ || interest_seg > (max_gap + current_seg_)) {
sendNack(interest_seg);
} else {
if (!consumer_in_sync_ && on_consumer_in_sync_) {
// we consider the remote consumer to be in sync as soon as it covers 70%
// of the production window with interests
uint32_t perc = (uint32_t)ceil((double)max_gap * 0.7);
if (interest_seg > (perc + current_seg_)) {
consumer_in_sync_ = true;
on_consumer_in_sync_(*socket_->getInterface(), interest);
}
}
uint64_t expiration =(uint32_t)(
now + floor((double)lifetime * rtc::INTEREST_LIFETIME_REDUCTION_FACTOR));
addToInterestQueue(interest_seg, expiration);
}
}
void RTCProductionProtocol::onError(std::error_code ec) {}
void RTCProductionProtocol::scheduleQueueTimer(uint64_t wait) {
interests_queue_timer_->expires_from_now(std::chrono::milliseconds(wait));
interests_queue_timer_->async_wait([this](std::error_code ec) {
if (ec) return;
interestQueueTimer();
});
}
void RTCProductionProtocol::addToInterestQueue(uint32_t interest_seg,
uint64_t expiration) {
// check if the seq number exists already
auto it_seqs = seqs_map_.find(interest_seg);
if (it_seqs != seqs_map_.end()) {
// the seq already exists
if (expiration < it_seqs->second) {
// we need to update the timer becasue we got a smaller one
// 1) remove the entry from the multimap
// 2) update this entry
auto range = timers_map_.equal_range(it_seqs->second);
for (auto it_timers = range.first; it_timers != range.second;
it_timers++) {
if (it_timers->second == it_seqs->first) {
timers_map_.erase(it_timers);
break;
}
}
timers_map_.insert(
std::pair<uint64_t, uint32_t>(expiration, interest_seg));
it_seqs->second = expiration;
} else {
// nothing to do here
return;
}
} else {
// add the new seq
timers_map_.insert(std::pair<uint64_t, uint32_t>(expiration, interest_seg));
seqs_map_.insert(std::pair<uint32_t, uint64_t>(interest_seg, expiration));
}
}
void RTCProductionProtocol::sendNacksForPendingInterests() {
std::unordered_set<uint32_t> to_remove;
uint32_t packet_gap = 100000; // set it to a high value (100sec)
if (packets_production_rate_ != 0)
packet_gap = (uint32_t)ceil(rtc::MILLI_IN_A_SEC / (double)packets_production_rate_);
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
for (auto it = seqs_map_.begin(); it != seqs_map_.end(); it++) {
if (it->first > current_seg_) {
uint64_t production_time =
((it->first - current_seg_) * packet_gap) + now;
if (production_time >= it->second) {
sendNack(it->first);
to_remove.insert(it->first);
}
}
}
// delete nacked interests
for (auto it = to_remove.begin(); it != to_remove.end(); it++) {
removeFromInterestQueue(*it);
}
}
void RTCProductionProtocol::removeFromInterestQueue(uint32_t interest_seg) {
auto seq_it = seqs_map_.find(interest_seg);
if (seq_it != seqs_map_.end()) {
auto range = timers_map_.equal_range(seq_it->second);
for (auto it_timers = range.first; it_timers != range.second; it_timers++) {
if (it_timers->second == seq_it->first) {
timers_map_.erase(it_timers);
break;
}
}
seqs_map_.erase(seq_it);
}
}
void RTCProductionProtocol::interestQueueTimer() {
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
for (auto it_timers = timers_map_.begin(); it_timers != timers_map_.end();) {
uint64_t expire = it_timers->first;
if (expire <= now) {
uint32_t seq = it_timers->second;
sendNack(seq);
// remove the interest from the other map
seqs_map_.erase(seq);
it_timers = timers_map_.erase(it_timers);
} else {
// stop, we are done!
break;
}
}
if (timers_map_.empty()) {
queue_timer_on_ = false;
} else {
queue_timer_on_ = true;
scheduleQueueTimer(timers_map_.begin()->first - now);
}
}
void RTCProductionProtocol::sendNack(uint32_t sequence) {
auto nack = core::PacketManager<>::getInstance().getPacket<ContentObject>();
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
uint32_t next_packet = current_seg_;
uint32_t prod_rate = bytes_production_rate_;
struct rtc::nack_packet_t header;
header.setTimestamp(now);
header.setProductionRate(prod_rate);
header.setProductionSegement(next_packet);
nack->appendPayload((const uint8_t *)&header, rtc::NACK_HEADER_SIZE);
Name n(flow_name_);
n.setSuffix(sequence);
nack->setName(n);
nack->setLifetime(0);
nack->setPathLabel(prod_label_);
if (!consumer_in_sync_ && on_consumer_in_sync_ &&
sequence < rtc::MIN_PROBE_SEQ && sequence > next_packet) {
consumer_in_sync_ = true;
auto interest = core::PacketManager<>::getInstance().getPacket<Interest>();
interest->setName(n);
on_consumer_in_sync_(*socket_->getInterface(), *interest);
}
if (*on_content_object_output_) {
on_content_object_output_->operator()(*socket_->getInterface(), *nack);
}
TRANSPORT_LOGD("Send nack %u", sequence);
portal_->sendContentObject(*nack);
}
} // namespace protocol
} // end namespace transport
|