aboutsummaryrefslogtreecommitdiffstats
path: root/libtransport/src/protocols/prod_protocol_rtc.cc
blob: e49f58167f55339599d9281830800580f9259682 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
/*
 * Copyright (c) 2021 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <glog/logging.h>
#include <hicn/transport/core/global_object_pool.h>
#include <implementation/socket_producer.h>
#include <protocols/prod_protocol_rtc.h>
#include <protocols/rtc/probe_handler.h>
#include <protocols/rtc/rtc_consts.h>
#include <stdlib.h>
#include <time.h>

#include <unordered_set>

namespace transport {
namespace protocol {

using Format = core::Packet::Format;

RTCProductionProtocol::RTCProductionProtocol(
    implementation::ProducerSocket *icn_socket)
    : ProductionProtocol(icn_socket),
      current_seg_(1),
      prev_produced_bytes_(0),
      prev_produced_packets_(0),
      produced_bytes_(0),
      produced_packets_(0),
      max_packet_production_(UINT32_MAX),
      bytes_production_rate_(UINT32_MAX),
      packets_production_rate_(0),
      last_produced_data_ts_(0),
      last_round_(utils::SteadyTime::nowMs().count()),
      allow_delayed_nacks_(false),
      queue_timer_on_(false),
      consumer_in_sync_(false),
      on_consumer_in_sync_(nullptr),
      pending_fec_pace_(false),
      max_len_(0),
      queue_len_(0),
      data_aggregation_(true),
      data_aggregation_timer_switch_(false) {
  std::uniform_int_distribution<> dis(0, 255);
  prod_label_ = dis(gen_);
  cache_label_ = (prod_label_ + 1) % 256;
  interests_queue_timer_ =
      std::make_unique<asio::steady_timer>(portal_->getThread().getIoService());
  round_timer_ =
      std::make_unique<asio::steady_timer>(portal_->getThread().getIoService());
  fec_pacing_timer_ =
      std::make_unique<asio::steady_timer>(portal_->getThread().getIoService());
  app_packets_timer_ =
      std::make_unique<asio::steady_timer>(portal_->getThread().getIoService());
  setOutputBufferSize(10000);
}

RTCProductionProtocol::~RTCProductionProtocol() {}

void RTCProductionProtocol::setProducerParam() {
  // Flow name: here we assume there is only one prefix registered in the portal
  flow_name_ = portal_->getServedNamespaces().begin()->getName();

  // Manifest
  uint32_t making_manifest;
  socket_->getSocketOption(interface::GeneralTransportOptions::MAKE_MANIFEST,
                           making_manifest);

  // Signer
  std::shared_ptr<auth::Signer> signer;
  socket_->getSocketOption(interface::GeneralTransportOptions::SIGNER, signer);

  // Default format
  core::Packet::Format default_format;
  socket_->getSocketOption(interface::GeneralTransportOptions::PACKET_FORMAT,
                           default_format);

  // FEC
  using namespace std::placeholders;
  enableFEC(std::bind(&RTCProductionProtocol::onFecPackets, this, _1),
            std::bind(&RTCProductionProtocol::getBuffer, this, _1));

  // Aggregated data
  socket_->getSocketOption(interface::RtcTransportOptions::AGGREGATED_DATA,
                           data_aggregation_);

  size_t signature_size = signer->getSignatureFieldSize();
  data_header_format_ = {
      !making_manifest ? Packet::toAHFormat(default_format) : default_format,
      !making_manifest ? signature_size : 0};
  manifest_header_format_ = {Packet::toAHFormat(default_format),
                             signature_size};
  nack_header_format_ = {Packet::toAHFormat(default_format), signature_size};
  fec_header_format_ = {Packet::toAHFormat(default_format), signature_size};

  // Schedule round timer
  scheduleRoundTimer();
}

void RTCProductionProtocol::scheduleRoundTimer() {
  round_timer_->expires_from_now(
      std::chrono::milliseconds(rtc::PRODUCER_STATS_INTERVAL));
  std::weak_ptr<RTCProductionProtocol> self = shared_from_this();
  round_timer_->async_wait([self](const std::error_code &ec) {
    if (ec) return;

    auto sp = self.lock();
    if (sp && sp->isRunning()) {
      sp->updateStats(true);
    }
  });
}

void RTCProductionProtocol::updateStats(bool new_round) {
  uint64_t now = utils::SteadyTime::nowMs().count();
  uint64_t duration = now - last_round_;
  if (!new_round) {
    duration += rtc::PRODUCER_STATS_INTERVAL;
  } else {
    prev_produced_bytes_ = 0;
    prev_produced_packets_ = 0;
  }

  double per_second = rtc::MILLI_IN_A_SEC / duration;

  uint32_t prev_packets_production_rate = packets_production_rate_;

  // bytes_production_rate_ does not take into account FEC!!! this is because
  // each client requests a differen amount of FEC packet so the client itself
  // increase the production rate in the right way
  bytes_production_rate_ =
      ceil((double)(produced_bytes_ + prev_produced_bytes_) * per_second);
  packets_production_rate_ =
      ceil((double)(produced_packets_ + prev_produced_packets_) * per_second);

  // add fec packets looking at the fec code. we don't use directly the number
  // of fec packets produced in 1 round because it may happen that different
  // numbers of blocks are generated during the rounds and this creates
  // inconsistencies in the estimation of the production rate
  uint32_t k = fec::FECUtils::getSourceSymbols(fec_type_);
  uint32_t n = fec::FECUtils::getBlockSymbols(fec_type_);

  packets_production_rate_ +=
      ceil((double)packets_production_rate_ / (double)k) * (n - k);

  // update the production rate as soon as it increases by 10% with respect to
  // the last round
  max_packet_production_ =
      produced_packets_ + ceil((double)produced_packets_ * 0.10);
  if (max_packet_production_ < rtc::WIN_MIN)
    max_packet_production_ = rtc::WIN_MIN;

  if (packets_production_rate_ <= rtc::MIN_PRODUCTION_RATE ||
      prev_packets_production_rate <= rtc::MIN_PRODUCTION_RATE) {
    allow_delayed_nacks_ = true;
  } else {
    // at least 2 rounds with enough packets
    allow_delayed_nacks_ = false;
  }

  // check if the production rate is decreased. if yes send nacks if needed
  if (prev_packets_production_rate < packets_production_rate_) {
    sendNacksForPendingInterests();
  }

  if (new_round) {
    prev_produced_bytes_ = produced_bytes_;
    prev_produced_packets_ = produced_packets_;
    produced_bytes_ = 0;
    produced_packets_ = 0;
    last_round_ = now;
    scheduleRoundTimer();
  }
}

uint32_t RTCProductionProtocol::produceStream(
    const Name &content_name, std::unique_ptr<utils::MemBuf> &&buffer,
    bool is_last, uint32_t start_offset) {
  throw errors::NotImplementedException();
}

uint32_t RTCProductionProtocol::produceStream(const Name &content_name,
                                              const uint8_t *buffer,
                                              size_t buffer_size, bool is_last,
                                              uint32_t start_offset) {
  throw errors::NotImplementedException();
}

void RTCProductionProtocol::produce(ContentObject &content_object) {
  throw errors::NotImplementedException();
}

uint32_t RTCProductionProtocol::produceDatagram(
    const Name &content_name, std::unique_ptr<utils::MemBuf> &&buffer) {
  std::size_t buffer_size = buffer->length();
  if (TRANSPORT_EXPECT_FALSE(buffer_size == 0)) return 0;

  uint32_t data_packet_size;
  socket_->getSocketOption(interface::GeneralTransportOptions::DATA_PACKET_SIZE,
                           data_packet_size);

  if (TRANSPORT_EXPECT_FALSE(
          (Packet::getHeaderSizeFromFormat(data_header_format_.first,
                                           data_header_format_.second) +
           rtc::DATA_HEADER_SIZE + buffer_size) > data_packet_size)) {
    return 0;
  }

  if (!data_aggregation_) {
    // if data aggregation is off emptyQueue will always return doing nothing
    emptyQueue();

    sendManifest(content_name);

    // create content object
    auto content_object =
        core::PacketManager<>::getInstance().getPacket<ContentObject>(
            data_header_format_.first, data_header_format_.second);

    // add rtc header to the payload
    struct rtc::data_packet_t header;
    content_object->appendPayload((const uint8_t *)&header,
                                  rtc::DATA_HEADER_SIZE);
    content_object->appendPayload(buffer->data(), buffer->length());

    // schedule actual sending on internal thread
    portal_->getThread().tryRunHandlerNow(
        [this, content_object{std::move(content_object)},
         content_name]() mutable {
          produceInternal(std::move(content_object), content_name);
        });
  } else {
    // XXX here we assume that all the packets that we push to the queue have
    // the same name
    auto app_pkt = utils::MemBuf::copyBuffer(buffer->data(), buffer->length());
    addPacketToQueue(std::move(app_pkt));
  }

  return 1;
}

void RTCProductionProtocol::addPacketToQueue(
    std::unique_ptr<utils::MemBuf> &&buffer) {
  std::size_t buffer_size = buffer->length();
  if ((queue_len_ + buffer_size) > rtc::MAX_RTC_PAYLOAD_SIZE) {
    emptyQueue();  // this should guaranty that the generated packet will never
                   // be larger than an MTU
  }

  waiting_app_packets_.push(std::move(buffer));
  if (max_len_ < buffer_size) max_len_ = buffer_size;
  queue_len_ += buffer_size;

  if (waiting_app_packets_.size() >= rtc::MAX_AGGREGATED_PACKETS) {
    emptyQueue();
  }

  if (waiting_app_packets_.size() >= 1 && !data_aggregation_timer_switch_) {
    data_aggregation_timer_switch_ = true;
    app_packets_timer_->expires_from_now(
        std::chrono::milliseconds(rtc::AGGREGATED_PACKETS_TIMER));
    std::weak_ptr<RTCProductionProtocol> self = shared_from_this();
    app_packets_timer_->async_wait([self](const std::error_code &ec) {
      if (ec) return;

      auto ptr = self.lock();
      if (ptr && ptr->isRunning()) {
        if (!ptr->data_aggregation_timer_switch_) return;
        ptr->emptyQueue();
      }
    });
  }
}

void RTCProductionProtocol::emptyQueue() {
  if (waiting_app_packets_.size() == 0) return;  // queue is empty

  Name n(flow_name_);

  // cancel timer is scheduled
  if (data_aggregation_timer_switch_) {
    data_aggregation_timer_switch_ = false;
    app_packets_timer_->cancel();
  }

  // send a manifest beforehand if the hash buffer if full
  sendManifest(n);

  // create content object
  auto content_object =
      core::PacketManager<>::getInstance().getPacket<ContentObject>(
          data_header_format_.first, data_header_format_.second);

  // add rtc header to the payload
  struct rtc::data_packet_t header;
  content_object->appendPayload((const uint8_t *)&header,
                                rtc::DATA_HEADER_SIZE);

  // init aggregated header
  rtc::AggrPktHeader hdr(
      (uint8_t *)(content_object->getPayload()->data() + rtc::DATA_HEADER_SIZE),
      max_len_, waiting_app_packets_.size());
  uint32_t header_size = hdr.getHeaderLen();
  content_object->append(header_size);  // leave space for the aggregated header

  uint8_t index = 0;
  while (waiting_app_packets_.size() != 0) {
    std::unique_ptr<utils::MemBuf> pkt =
        std::move(waiting_app_packets_.front());
    waiting_app_packets_.pop();
    // XXX for the moment we have a single name, so this works, otherwise we
    // need to do something else
    hdr.addPacketToHeader(index, pkt->length());
    // append packet
    content_object->appendPayload(pkt->data(), pkt->length());
    index++;
  }

  // reset queue values
  max_len_ = 0;
  queue_len_ = 0;

  // the packet is ready we need to send it
  portal_->getThread().tryRunHandlerNow(
      [this, content_object{std::move(content_object)}, n]() mutable {
        produceInternal(std::move(content_object), n);
      });
}

void RTCProductionProtocol::sendManifest(const Name &name) {
  if (!making_manifest_) {
    return;
  }

  Name manifest_name(name);

  uint32_t data_packet_size;
  socket_->getSocketOption(interface::GeneralTransportOptions::DATA_PACKET_SIZE,
                           data_packet_size);

  // The maximum number of entries a manifest can hold
  uint32_t manifest_capacity = making_manifest_;

  // If there is not enough hashes to fill a manifest, return early
  if (manifest_entries_.size() < manifest_capacity) {
    return;
  }

  // Create a new manifest
  std::shared_ptr<core::ContentObjectManifest> manifest =
      createManifest(manifest_name.setSuffix(current_seg_));

  // Fill the manifest with packet hashes that were previously saved
  uint32_t nb_entries;
  for (nb_entries = 0; nb_entries < manifest_capacity; ++nb_entries) {
    if (manifest_entries_.empty()) {
      break;
    }
    std::pair<uint32_t, auth::CryptoHash> front = manifest_entries_.front();
    manifest->addSuffixHash(front.first, front.second);
    manifest_entries_.pop();
  }

  DLOG_IF(INFO, VLOG_IS_ON(3))
      << "Sending manifest " << manifest->getName().getSuffix() << " of size "
      << nb_entries;

  // Encode and send the manifest
  manifest->encode();
  portal_->getThread().tryRunHandlerNow(
      [this, content_object{std::move(manifest)}, manifest_name]() mutable {
        produceInternal(std::move(content_object), manifest_name);
      });
}

std::shared_ptr<core::ContentObjectManifest>
RTCProductionProtocol::createManifest(const Name &content_name) const {
  Name name(content_name);

  auth::CryptoHashType hash_algo;
  socket_->getSocketOption(interface::GeneralTransportOptions::HASH_ALGORITHM,
                           hash_algo);

  uint64_t now = utils::SteadyTime::nowMs().count();

  // Create a new manifest
  std::shared_ptr<core::ContentObjectManifest> manifest(
      ContentObjectManifest::createManifest(
          manifest_header_format_.first, name, core::ManifestVersion::VERSION_1,
          core::ManifestType::INLINE_MANIFEST, false, name, hash_algo,
          manifest_header_format_.second));

  // Set connection parameters
  manifest->setParamsRTC(ParamsRTC{
      .timestamp = now,
      .prod_rate = bytes_production_rate_,
      .prod_seg = current_seg_,
      .fec_type = fec_type_,
  });

  return manifest;
}

void RTCProductionProtocol::produceInternal(
    std::shared_ptr<ContentObject> &&content_object, const Name &content_name,
    bool fec) {
  uint64_t now = utils::SteadyTime::nowMs().count();

  if (fec && (now - last_produced_data_ts_) < rtc::FEC_PACING_TIME) {
    paced_fec_packets_.push(std::pair<uint64_t, ContentObject::Ptr>(
        now, std::move(content_object)));
    postponeFecPacket();
  } else {
    // need to check if there are FEC packets waiting to be sent
    flushFecPkts(current_seg_);
    producePktInternal(std::move(content_object), content_name, fec);
  }
}

void RTCProductionProtocol::producePktInternal(
    std::shared_ptr<ContentObject> &&content_object, const Name &content_name,
    bool fec) {
  bool is_manifest = content_object->getPayloadType() == PayloadType::MANIFEST;
  uint64_t now = utils::SteadyTime::nowMs().count();

  // set rtc header
  if (!is_manifest) {
    struct rtc::data_packet_t *data_pkt =
        (struct rtc::data_packet_t *)content_object->getPayload()->data();
    data_pkt->setTimestamp(now);
    data_pkt->setProductionRate(bytes_production_rate_);
  }

  // set hicn stuff
  Name n(content_name);
  content_object->setName(n.setSuffix(current_seg_));
  content_object->setLifetime(500);  // XXX this should be set by the APP
  content_object->setPathLabel(prod_label_);

  // update stats
  if (!fec) {
    produced_bytes_ +=
        content_object->headerSize() + content_object->payloadSize();
    produced_packets_++;
  }

  if (!data_aggregation_ && produced_packets_ >= max_packet_production_) {
    // in this case all the pending interests may be used to accomodate the
    // sudden increase in the production rate. calling the updateStats we will
    // notify all the clients
    updateStats(false);
  }

  DLOG_IF(INFO, VLOG_IS_ON(3))
      << "Sending content object: " << n << ", is fec: " << fec;

  // pass packet to FEC encoder
  if (fec_encoder_ && !fec) {
    uint32_t offset =
        is_manifest ? content_object->headerSize()
                    : content_object->headerSize() + rtc::DATA_HEADER_SIZE;
    uint32_t metadata = static_cast<uint32_t>(content_object->getPayloadType());

    fec_encoder_->onPacketProduced(*content_object, offset, metadata);
  }

  output_buffer_.insert(content_object);

  if (*on_content_object_in_output_buffer_) {
    on_content_object_in_output_buffer_->operator()(*socket_->getInterface(),
                                                    *content_object);
  }

  auto seq_it = seqs_map_.find(current_seg_);
  if (seq_it != seqs_map_.end()) {
    sendContentObject(content_object, false, fec);
  }

  if (*on_content_object_output_) {
    on_content_object_output_->operator()(*socket_->getInterface(),
                                          *content_object);
  }

  // remove interests from the interest cache if it exists
  removeFromInterestQueue(current_seg_);

  if (!fec) last_produced_data_ts_ = now;

  // Update current segment
  current_seg_ = (current_seg_ + 1) % rtc::MIN_PROBE_SEQ;

  // Publish FEC packets if available
  if (fec_encoder_ && !fec) {
    while (!fec && pending_fec_packets_.size()) {
      auto &co = pending_fec_packets_.front();
      produceInternal(std::move(co), flow_name_, true);
      pending_fec_packets_.pop();
    }
  }
}

void RTCProductionProtocol::flushFecPkts(uint32_t current_seq_num) {
  // Currently we immediately send all the pending fec packets
  // A pacing policy may be helpful, but we do not want to delay too much
  // the packets at this moment.
  while (paced_fec_packets_.size() > 0) {
    producePktInternal(std::move(paced_fec_packets_.front().second), flow_name_,
                       true);
    paced_fec_packets_.pop();
  }
  fec_pacing_timer_->cancel();
  pending_fec_pace_ = false;
  postponeFecPacket();
}

void RTCProductionProtocol::postponeFecPacket() {
  if (paced_fec_packets_.size() == 0) return;
  if (pending_fec_pace_) {
    return;
  }

  uint64_t produced_time = paced_fec_packets_.front().first;
  uint64_t now = utils::SteadyTime::nowMs().count();

  uint64_t wait_time = 0;
  if ((produced_time + rtc::FEC_PACING_TIME) > now)
    wait_time = produced_time + rtc::FEC_PACING_TIME - now;

  fec_pacing_timer_->expires_from_now(std::chrono::milliseconds(wait_time));
  pending_fec_pace_ = true;

  std::weak_ptr<RTCProductionProtocol> self = shared_from_this();
  fec_pacing_timer_->async_wait([self](const std::error_code &ec) {
    if (ec) return;

    auto sp = self.lock();
    if (sp && sp->isRunning()) {
      if (!sp->pending_fec_pace_) return;

      if (sp->paced_fec_packets_.size() > 0) {
        sp->producePktInternal(std::move(sp->paced_fec_packets_.front().second),
                               sp->flow_name_, true);
        sp->paced_fec_packets_.pop();
      }
      sp->pending_fec_pace_ = false;
      sp->postponeFecPacket();
    }
  });
}

void RTCProductionProtocol::onInterest(Interest &interest) {
  if (*on_interest_input_) {
    on_interest_input_->operator()(*socket_->getInterface(), interest);
  }

  auto suffix = interest.firstSuffix();
  // numberOfSuffixes returns only the prefixes in the payalod
  // we add + 1 to count also the seq in the name
  auto n_suffixes = interest.numberOfSuffixes() + 1;
  Name name = interest.getName();
  bool prev_consumer_state = consumer_in_sync_;

  for (uint32_t i = 0; i < n_suffixes; i++) {
    if (i > 0) {
      name.setSuffix(*(suffix + (i - 1)));
    }

    DLOG_IF(INFO, VLOG_IS_ON(3)) << "Received interest " << name;

    const std::shared_ptr<ContentObject> content_object =
        output_buffer_.find(name);

    if (content_object) {
      if (*on_interest_satisfied_output_buffer_) {
        on_interest_satisfied_output_buffer_->operator()(
            *socket_->getInterface(), interest);
      }

      if (*on_content_object_output_) {
        on_content_object_output_->operator()(*socket_->getInterface(),
                                              *content_object);
      }

      DLOG_IF(INFO, VLOG_IS_ON(3))
          << "Send content %u (onInterest) " << content_object->getName();
      content_object->setPathLabel(cache_label_);
      sendContentObject(content_object);
    } else {
      if (*on_interest_process_) {
        on_interest_process_->operator()(*socket_->getInterface(), interest);
      }
      processInterest(name.getSuffix(), interest.getLifetime());
    }
  }

  if (prev_consumer_state != consumer_in_sync_ && consumer_in_sync_)
    on_consumer_in_sync_(*socket_->getInterface(), interest);
}

void RTCProductionProtocol::processInterest(uint32_t interest_seg,
                                            uint32_t lifetime) {
  if (interest_seg == 0) {
    // first packet from the consumer, reset sync state
    consumer_in_sync_ = false;
  }

  uint64_t now = utils::SteadyTime::nowMs().count();

  switch (rtc::ProbeHandler::getProbeType(interest_seg)) {
    case rtc::ProbeType::INIT:
      DLOG_IF(INFO, VLOG_IS_ON(3)) << "Received init probe " << interest_seg;
      sendManifestProbe(interest_seg);
      return;
    case rtc::ProbeType::RTT:
      DLOG_IF(INFO, VLOG_IS_ON(3)) << "Received RTT probe " << interest_seg;
      sendNack(interest_seg);
      return;
    default:
      break;
  }

  // if the production rate 0 use delayed nacks
  if (allow_delayed_nacks_ && interest_seg >= current_seg_) {
    uint64_t next_timer = UINT64_MAX;
    if (!timers_map_.empty()) {
      next_timer = timers_map_.begin()->first;
    }

    uint64_t expiration = now + rtc::NACK_DELAY;
    addToInterestQueue(interest_seg, expiration);

    // here we have at least one interest in the queue, we need to start or
    // update the timer
    if (!queue_timer_on_) {
      // set timeout
      queue_timer_on_ = true;
      scheduleQueueTimer(timers_map_.begin()->first - now);
    } else {
      // re-schedule the timer because a new interest will expires sooner
      if (next_timer > timers_map_.begin()->first) {
        interests_queue_timer_->cancel();
        scheduleQueueTimer(timers_map_.begin()->first - now);
      }
    }
    return;
  }

  if (queue_timer_on_) {
    // the producer is producing. Send nacks to packets that will expire
    // before the data production and remove the timer
    queue_timer_on_ = false;
    interests_queue_timer_->cancel();
    sendNacksForPendingInterests();
  }

  uint32_t max_gap = (uint32_t)floor(
      (double)((double)((double)lifetime *
                        rtc::INTEREST_LIFETIME_REDUCTION_FACTOR /
                        rtc::MILLI_IN_A_SEC) *
               (double)(packets_production_rate_)));

  if (interest_seg < current_seg_ || interest_seg > (max_gap + current_seg_)) {
    sendNack(interest_seg);
  } else {
    if (!consumer_in_sync_ && on_consumer_in_sync_) {
      // we consider the remote consumer to be in sync as soon as it covers
      // 70% of the production window with interests
      uint32_t perc = ceil((double)max_gap * 0.7);
      if (interest_seg > (perc + current_seg_)) {
        consumer_in_sync_ = true;
        // on_consumer_in_sync_(*socket_->getInterface(), interest);
      }
    }
    uint64_t expiration =
        now + floor((double)lifetime * rtc::INTEREST_LIFETIME_REDUCTION_FACTOR);
    addToInterestQueue(interest_seg, expiration);
  }
}

void RTCProductionProtocol::scheduleQueueTimer(uint64_t wait) {
  interests_queue_timer_->expires_from_now(std::chrono::milliseconds(wait));
  std::weak_ptr<RTCProductionProtocol> self = shared_from_this();
  interests_queue_timer_->async_wait([self](const std::error_code &ec) {
    if (ec) {
      return;
    }

    auto sp = self.lock();
    if (sp && sp->isRunning()) {
      sp->interestQueueTimer();
    }
  });
}

void RTCProductionProtocol::addToInterestQueue(uint32_t interest_seg,
                                               uint64_t expiration) {
  // check if the seq number exists already
  auto it_seqs = seqs_map_.find(interest_seg);
  if (it_seqs != seqs_map_.end()) {
    // the seq already exists
    if (expiration < it_seqs->second) {
      // we need to update the timer becasue we got a smaller one
      // 1) remove the entry from the multimap
      // 2) update this entry
      auto range = timers_map_.equal_range(it_seqs->second);
      for (auto it_timers = range.first; it_timers != range.second;
           it_timers++) {
        if (it_timers->second == it_seqs->first) {
          timers_map_.erase(it_timers);
          break;
        }
      }
      timers_map_.insert(
          std::pair<uint64_t, uint32_t>(expiration, interest_seg));
      it_seqs->second = expiration;
    } else {
      // nothing to do here
      return;
    }
  } else {
    // add the new seq
    timers_map_.insert(std::pair<uint64_t, uint32_t>(expiration, interest_seg));
    seqs_map_.insert(std::pair<uint32_t, uint64_t>(interest_seg, expiration));
  }
}

void RTCProductionProtocol::sendNacksForPendingInterests() {
  std::unordered_set<uint32_t> to_remove;

  uint32_t pps = ceil((double)(packets_production_rate_)*rtc::
                          INTEREST_LIFETIME_REDUCTION_FACTOR);

  uint64_t now = utils::SteadyTime::nowMs().count();
  for (auto it = seqs_map_.begin(); it != seqs_map_.end(); it++) {
    if (it->first > current_seg_ && it->second > now) {
      double exp_time_in_sec =
          (double)(it->second - now) / (double)rtc::MILLI_IN_A_SEC;
      uint32_t packets_prod_before_expire = ceil((double)pps * exp_time_in_sec);

      if (it->first > (current_seg_ + packets_prod_before_expire)) {
        sendNack(it->first);
        to_remove.insert(it->first);
      }
    } else if (TRANSPORT_EXPECT_FALSE(it->first < current_seg_ ||
                                      it->second <= now)) {
      // this branch should never be execcuted
      // first condition: the packet was already prdocued and we have and old
      // interest pending. send a nack to notify the consumer if needed. the
      // case it->first = current_seg_ is not handled because
      // the interest will be satified by the next data packet.
      // second condition: the interest is expired.
      sendNack(it->first);
      to_remove.insert(it->first);
    }
  }

  // delete nacked interests
  for (auto it = to_remove.begin(); it != to_remove.end(); it++) {
    removeFromInterestQueue(*it);
  }
}

void RTCProductionProtocol::removeFromInterestQueue(uint32_t interest_seg) {
  auto seq_it = seqs_map_.find(interest_seg);
  if (seq_it != seqs_map_.end()) {
    auto range = timers_map_.equal_range(seq_it->second);
    for (auto it_timers = range.first; it_timers != range.second; it_timers++) {
      if (it_timers->second == seq_it->first) {
        timers_map_.erase(it_timers);
        break;
      }
    }
    seqs_map_.erase(seq_it);
  }
}

void RTCProductionProtocol::interestQueueTimer() {
  uint64_t now = utils::SteadyTime::nowMs().count();

  for (auto it_timers = timers_map_.begin(); it_timers != timers_map_.end();) {
    uint64_t expire = it_timers->first;
    if (expire <= now) {
      uint32_t seq = it_timers->second;
      sendNack(seq);
      // remove the interest from the other map
      seqs_map_.erase(seq);
      it_timers = timers_map_.erase(it_timers);
    } else {
      // stop, we are done!
      break;
    }
  }
  if (timers_map_.empty()) {
    queue_timer_on_ = false;
  } else {
    queue_timer_on_ = true;
    scheduleQueueTimer(timers_map_.begin()->first - now);
  }
}

void RTCProductionProtocol::sendManifestProbe(uint32_t sequence) {
  Name manifest_name(flow_name_);
  manifest_name.setSuffix(sequence);

  std::shared_ptr<core::ContentObjectManifest> manifest_probe =
      createManifest(manifest_name);

  manifest_probe->setLifetime(0);
  manifest_probe->setPathLabel(prod_label_);
  manifest_probe->encode();

  if (*on_content_object_output_) {
    on_content_object_output_->operator()(*socket_->getInterface(),
                                          *manifest_probe);
  }

  DLOG_IF(INFO, VLOG_IS_ON(3)) << "Send init probe " << sequence;
  sendContentObject(manifest_probe, true, false);
}

void RTCProductionProtocol::sendNack(uint32_t sequence) {
  auto nack = core::PacketManager<>::getInstance().getPacket<ContentObject>(
      nack_header_format_.first, nack_header_format_.second);
  uint64_t now = utils::SteadyTime::nowMs().count();
  uint32_t next_packet = current_seg_;
  uint32_t prod_rate = bytes_production_rate_;

  struct rtc::nack_packet_t header;
  header.setTimestamp(now);
  header.setProductionRate(prod_rate);
  header.setProductionSegment(next_packet);
  nack->appendPayload((const uint8_t *)&header, rtc::NACK_HEADER_SIZE);

  Name n(flow_name_);
  n.setSuffix(sequence);
  nack->setName(n);
  nack->setLifetime(0);
  nack->setPathLabel(prod_label_);

  if (!consumer_in_sync_ && on_consumer_in_sync_ &&
      rtc::ProbeHandler::getProbeType(sequence) == rtc::ProbeType::NOT_PROBE &&
      sequence > next_packet) {
    consumer_in_sync_ = true;
    Packet::Format format;
    socket_->getSocketOption(interface::GeneralTransportOptions::PACKET_FORMAT,
                             format);

    auto interest =
        core::PacketManager<>::getInstance().getPacket<Interest>(format);
    interest->setName(n);
    on_consumer_in_sync_(*socket_->getInterface(), *interest);
  }

  if (*on_content_object_output_) {
    on_content_object_output_->operator()(*socket_->getInterface(), *nack);
  }

  DLOG_IF(INFO, VLOG_IS_ON(3)) << "Send nack " << sequence;
  sendContentObject(nack, true, false);
}

void RTCProductionProtocol::sendContentObject(
    std::shared_ptr<ContentObject> content_object, bool nack, bool fec) {
  bool is_ah = _is_ah(content_object->getFormat());

  // Compute signature
  if (is_ah) {
    signer_->signPacket(content_object.get());
  }

  portal_->sendContentObject(*content_object);

  // Compute and save data packet digest
  if (making_manifest_ && !is_ah) {
    auth::CryptoHashType hash_algo;
    socket_->getSocketOption(interface::GeneralTransportOptions::HASH_ALGORITHM,
                             hash_algo);
    manifest_entries_.push({content_object->getName().getSuffix(),
                            content_object->computeDigest(hash_algo)});
  }
}

void RTCProductionProtocol::onFecPackets(fec::BufferArray &packets) {
  DLOG_IF(INFO, VLOG_IS_ON(3))
      << "Produced " << packets.size() << " FEC packets";

  for (auto &packet : packets) {
    auto content_object =
        std::static_pointer_cast<ContentObject>(packet.getBuffer());
    content_object->prepend(content_object->headerSize() +
                            rtc::DATA_HEADER_SIZE);
    pending_fec_packets_.push(std::move(content_object));
  }
}

fec::buffer RTCProductionProtocol::getBuffer(std::size_t size) {
  DLOG_IF(INFO, VLOG_IS_ON(3))
      << "Asked buffer for FEC symbol of size " << size;

  auto ret = core::PacketManager<>::getInstance().getPacket<ContentObject>(
      fec_header_format_.first, fec_header_format_.second);

  ret->updateLength(rtc::DATA_HEADER_SIZE + size);
  ret->append(rtc::DATA_HEADER_SIZE + size);
  ret->trimStart(ret->headerSize() + rtc::DATA_HEADER_SIZE);

  DLOG_IF(INFO, VLOG_IS_ON(3))
      << "Responding with buffer of length " << ret->length();
  DCHECK(ret->length() >= size);

  return ret;
}

}  // namespace protocol

}  // namespace transport