1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
/*
* Copyright (c) 2017-2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <hicn/transport/core/name.h>
#include <protocols/production_protocol.h>
#include <atomic>
#include <map>
#include <mutex>
namespace transport {
namespace protocol {
class RTCProductionProtocol : public ProductionProtocol {
public:
RTCProductionProtocol(implementation::ProducerSocket *icn_socket);
~RTCProductionProtocol() override;
using ProductionProtocol::start;
using ProductionProtocol::stop;
void produce(ContentObject &content_object) override;
uint32_t produceStream(const Name &content_name,
std::unique_ptr<utils::MemBuf> &&buffer,
bool is_last = true,
uint32_t start_offset = 0) override;
uint32_t produceStream(const Name &content_name, const uint8_t *buffer,
size_t buffer_size, bool is_last = true,
uint32_t start_offset = 0) override;
uint32_t produceDatagram(const Name &content_name,
std::unique_ptr<utils::MemBuf> &&buffer) override;
uint32_t produceDatagram(const Name &content_name, const uint8_t *buffer,
size_t buffer_size) override {
return produceDatagram(content_name, utils::MemBuf::wrapBuffer(
buffer, buffer_size, buffer_size));
}
void registerNamespaceWithNetwork(const Prefix &producer_namespace) override;
void setConsumerInSyncCallback(
interface::ProducerInterestCallback &&callback) {
on_consumer_in_sync_ = std::move(callback);
}
private:
// packet handlers
void onInterest(Interest &interest) override;
void onError(std::error_code ec) override;
void processInterest(uint32_t interest_seg, uint32_t lifetime);
void produceInternal(std::shared_ptr<ContentObject> &&content_object,
const Name &content_name, bool fec = false);
void sendNack(uint32_t sequence);
// stats
void updateStats();
void scheduleRoundTimer();
// pending intersts functions
void addToInterestQueue(uint32_t interest_seg, uint64_t expiration);
void sendNacksForPendingInterests();
void removeFromInterestQueue(uint32_t interest_seg);
void scheduleQueueTimer(uint64_t wait);
void interestQueueTimer();
// FEC functions
void onFecPackets(std::vector<std::pair<uint32_t, fec::buffer>> &packets);
fec::buffer getBuffer(std::size_t size);
core::Name flow_name_;
uint32_t current_seg_; // seq id of the next packet produced
uint32_t prod_label_; // path lable of the producer
uint32_t cache_label_; // path lable for content from the producer cache
uint16_t data_header_size_; // hicn data header size
uint32_t produced_bytes_; // bytes produced in the last round
uint32_t produced_packets_; // packet produed in the last round
uint32_t produced_fec_packets_; // fec packets produced last round
uint32_t max_packet_production_; // never exceed this number of packets
// without update stats
uint32_t bytes_production_rate_; // bytes per sec
uint32_t packets_production_rate_; // pps
uint32_t fec_packets_production_rate_; // pps
std::unique_ptr<asio::steady_timer> round_timer_;
uint64_t last_round_;
// delayed nacks are used by the producer to avoid to send too
// many nacks we the producer rate is 0. however, if the producer moves
// from a production rate higher than 0 to 0 the first round the dealyed
// should be avoided in order to notify the consumer as fast as possible
// of the new rate.
bool allow_delayed_nacks_;
// queue for the received interests
// this map maps the expiration time of an interest to
// its sequence number. the map is sorted by timeouts
// the same timeout may be used for multiple sequence numbers
// but for each sequence number we store only the smallest
// expiry time. In this way the mapping from seqs_map_ to
// timers_map_ is unique
std::multimap<uint64_t, uint32_t> timers_map_;
// this map does the opposite, this map is not ordered
std::unordered_map<uint32_t, uint64_t> seqs_map_;
bool queue_timer_on_;
std::unique_ptr<asio::steady_timer> interests_queue_timer_;
// this callback is called when the remote consumer is in sync with high
// probability. it is called only the first time that the switch happen.
// XXX this makes sense only in P2P mode, while in standard mode is
// impossible to know the state of the consumers so it should not be used.
bool consumer_in_sync_;
interface::ProducerInterestCallback on_consumer_in_sync_;
// Save FEC packets here before sending them
std::queue<ContentObject::Ptr> pending_fec_packets_;
};
} // namespace protocol
} // end namespace transport
|