1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
/*
* Copyright (c) 2017-2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hicn/transport/interfaces/socket_consumer.h>
#include <implementation/socket_consumer.h>
#include <math.h>
#include <protocols/rtc.h>
#include <random>
namespace transport {
namespace protocol {
using namespace interface;
RTCTransportProtocol::RTCTransportProtocol(
implementation::ConsumerSocket *icn_socket)
: TransportProtocol(icn_socket, nullptr),
DatagramReassembly(icn_socket, this),
inflightInterests_(1 << default_values::log_2_default_buffer_size),
modMask_((1 << default_values::log_2_default_buffer_size) - 1) {
icn_socket->getSocketOption(PORTAL, portal_);
rtx_timer_ = std::make_unique<asio::steady_timer>(portal_->getIoService());
probe_timer_ = std::make_unique<asio::steady_timer>(portal_->getIoService());
sentinel_timer_ =
std::make_unique<asio::steady_timer>(portal_->getIoService());
round_timer_ = std::make_unique<asio::steady_timer>(portal_->getIoService());
initParams();
}
RTCTransportProtocol::~RTCTransportProtocol() {}
void RTCTransportProtocol::resume() {
if (is_running_) return;
is_running_ = true;
inflightInterestsCount_ = 0;
probeRtt();
sentinelTimer();
newRound();
scheduleNextInterests();
portal_->runEventsLoop();
is_running_ = false;
}
// private
void RTCTransportProtocol::initParams() {
portal_->setConsumerCallback(this);
// controller var
currentState_ = HICN_RTC_SYNC_STATE;
// cwin var
currentCWin_ = HICN_INITIAL_CWIN;
maxCWin_ = HICN_INITIAL_CWIN_MAX;
// names/packets var
actualSegment_ = 0;
inflightInterestsCount_ = 0;
interestRetransmissions_.clear();
lastSegNacked_ = 0;
lastReceived_ = 0;
lastReceivedTime_ = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
lastEvent_ = lastReceivedTime_;
highestReceived_ = 0;
firstSequenceInRound_ = 0;
rtx_timer_used_ = false;
for (int i = 0; i < (1 << default_values::log_2_default_buffer_size); i++) {
inflightInterests_[i] = {0};
}
// stats
firstPckReceived_ = false;
receivedBytes_ = 0;
sentInterest_ = 0;
receivedData_ = 0;
packetLost_ = 0;
lossRecovered_ = 0;
avgPacketSize_ = HICN_INIT_PACKET_SIZE;
gotNack_ = false;
gotFutureNack_ = 0;
rounds_ = 0;
roundsWithoutNacks_ = 0;
pathTable_.clear();
// CC var
estimatedBw_ = 0.0;
lossRate_ = 0.0;
queuingDelay_ = 0.0;
protocolState_ = HICN_RTC_NORMAL_STATE;
producerPathLabels_[0] = 0;
producerPathLabels_[1] = 0;
initied = false;
socket_->setSocketOption(GeneralTransportOptions::INTEREST_LIFETIME,
(uint32_t)HICN_RTC_INTEREST_LIFETIME);
}
// private
void RTCTransportProtocol::reset() {
initParams();
probeRtt();
sentinelTimer();
newRound();
}
uint32_t max(uint32_t a, uint32_t b) {
if (a > b)
return a;
else
return b;
}
uint32_t min(uint32_t a, uint32_t b) {
if (a < b)
return a;
else
return b;
}
void RTCTransportProtocol::newRound() {
round_timer_->expires_from_now(std::chrono::milliseconds(HICN_ROUND_LEN));
round_timer_->async_wait([this](std::error_code ec) {
if (ec) return;
updateStats(HICN_ROUND_LEN);
newRound();
});
}
void RTCTransportProtocol::updateDelayStats(
const ContentObject &content_object) {
uint32_t segmentNumber = content_object.getName().getSuffix();
uint32_t pkt = segmentNumber & modMask_;
if (inflightInterests_[pkt].state != sent_) return;
if (interestRetransmissions_.find(segmentNumber) !=
interestRetransmissions_.end())
// this packet was rtx at least once
return;
uint32_t pathLabel = content_object.getPathLabel();
if (pathTable_.find(pathLabel) == pathTable_.end()) {
// found a new path
std::shared_ptr<RTCDataPath> newPath = std::make_shared<RTCDataPath>();
pathTable_[pathLabel] = newPath;
}
// RTT measurements are useful both from NACKs and data packets
uint64_t RTT = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count() -
inflightInterests_[pkt].transmissionTime;
pathTable_[pathLabel]->insertRttSample(RTT);
auto payload = content_object.getPayload();
// we collect OWD only for datapackets
if (payload->length() != HICN_NACK_HEADER_SIZE) {
uint64_t *senderTimeStamp = (uint64_t *)payload->data();
int64_t OWD = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count() -
*senderTimeStamp;
pathTable_[pathLabel]->insertOwdSample(OWD);
pathTable_[pathLabel]->computeInterArrivalGap(segmentNumber);
} else {
pathTable_[pathLabel]->receivedNack();
}
}
void RTCTransportProtocol::updateStats(uint32_t round_duration) {
if (pathTable_.empty()) return;
if (receivedBytes_ != 0) {
double bytesPerSec =
(double)(receivedBytes_ *
((double)HICN_MILLI_IN_A_SEC / (double)round_duration));
estimatedBw_ = (estimatedBw_ * HICN_ESTIMATED_BW_ALPHA) +
((1 - HICN_ESTIMATED_BW_ALPHA) * bytesPerSec);
}
uint64_t minRtt = UINT_MAX;
uint64_t maxRtt = 0;
for (auto it = pathTable_.begin(); it != pathTable_.end(); it++) {
it->second->roundEnd();
if (it->second->isActive()) {
if (it->second->getMinRtt() < minRtt) {
minRtt = it->second->getMinRtt();
producerPathLabels_[0] = it->first;
}
if (it->second->getMinRtt() > maxRtt) {
maxRtt = it->second->getMinRtt();
producerPathLabels_[1] = it->first;
}
}
}
if (pathTable_.find(producerPathLabels_[0]) == pathTable_.end() ||
pathTable_.find(producerPathLabels_[1]) == pathTable_.end())
return; // this should not happen
// as a queuing delay we keep the lowest one among the two paths
// if one path is congested the forwarder should decide to do not
// use it so it does not make sense to inform the application
// that maybe we have a problem
if (pathTable_[producerPathLabels_[0]]->getQueuingDealy() <
pathTable_[producerPathLabels_[1]]->getQueuingDealy())
queuingDelay_ = pathTable_[producerPathLabels_[0]]->getQueuingDealy();
else
queuingDelay_ = pathTable_[producerPathLabels_[1]]->getQueuingDealy();
if (sentInterest_ != 0 && currentState_ == HICN_RTC_NORMAL_STATE) {
uint32_t numberTheoricallyReceivedPackets_ =
highestReceived_ - firstSequenceInRound_;
double lossRate = 0;
if (numberTheoricallyReceivedPackets_ != 0)
lossRate = (double)((double)(packetLost_ - lossRecovered_) /
(double)numberTheoricallyReceivedPackets_);
if (lossRate < 0) lossRate = 0;
if (initied) {
lossRate_ = lossRate_ * HICN_ESTIMATED_LOSSES_ALPHA +
(lossRate * (1 - HICN_ESTIMATED_LOSSES_ALPHA));
} else {
lossRate_ = lossRate;
initied = true;
}
}
if (avgPacketSize_ == 0) avgPacketSize_ = HICN_INIT_PACKET_SIZE;
// for the BDP we use the max rtt, so that we calibrate the window on the
// RTT of the slowest path. In this way we are sure that the window will
// never be too small
uint32_t BDP = (uint32_t)ceil(
(estimatedBw_ *
(double)((double)pathTable_[producerPathLabels_[1]]->getMinRtt() /
(double)HICN_MILLI_IN_A_SEC) *
HICN_BANDWIDTH_SLACK_FACTOR) /
avgPacketSize_);
uint32_t BW = (uint32_t)ceil(estimatedBw_);
computeMaxWindow(BW, BDP);
if (*stats_summary_) {
// Send the stats to the app
stats_->updateQueuingDelay(queuingDelay_);
stats_->updateLossRatio(lossRate_);
stats_->updateAverageRtt(pathTable_[producerPathLabels_[1]]->getMinRtt());
(*stats_summary_)(*socket_->getInterface(), *stats_);
}
// bound also by interest lifitime* production rate
if (!gotNack_) {
roundsWithoutNacks_++;
if (currentState_ == HICN_RTC_SYNC_STATE &&
roundsWithoutNacks_ >= HICN_ROUNDS_IN_SYNC_BEFORE_SWITCH) {
currentState_ = HICN_RTC_NORMAL_STATE;
}
} else {
roundsWithoutNacks_ = 0;
}
updateCCState();
updateWindow();
if (queuingDelay_ > 25.0) {
// this indicates that the client will go soon out of synch,
// switch to synch mode
if (currentState_ == HICN_RTC_NORMAL_STATE) {
currentState_ = HICN_RTC_SYNC_STATE;
}
computeMaxWindow(BW, 0);
increaseWindow();
}
// in any case we reset all the counters
gotNack_ = false;
gotFutureNack_ = 0;
receivedBytes_ = 0;
sentInterest_ = 0;
receivedData_ = 0;
packetLost_ = 0;
lossRecovered_ = 0;
rounds_++;
firstSequenceInRound_ = highestReceived_;
}
void RTCTransportProtocol::updateCCState() {
// TODO
}
void RTCTransportProtocol::computeMaxWindow(uint32_t productionRate,
uint32_t BDPWin) {
if (productionRate ==
0) // we have no info about the producer, keep the previous maxCWin
return;
uint32_t interestLifetime = default_values::interest_lifetime;
socket_->getSocketOption(GeneralTransportOptions::INTEREST_LIFETIME,
interestLifetime);
uint32_t maxWaintingInterest = (uint32_t)ceil(
(productionRate / avgPacketSize_) *
(double)((double)(interestLifetime *
HICN_INTEREST_LIFETIME_REDUCTION_FACTOR) /
(double)HICN_MILLI_IN_A_SEC));
if (currentState_ == HICN_RTC_SYNC_STATE) {
// in this case we do not limit the window with the BDP, beacuse most
// likely it is wrong
maxCWin_ = maxWaintingInterest;
return;
}
// currentState = RTC_NORMAL_STATE
if (BDPWin != 0) {
maxCWin_ = (uint32_t)ceil((double)BDPWin +
(((double)BDPWin * 30.0) / 100.0)); // BDP + 30%
} else {
maxCWin_ = min(maxWaintingInterest, maxCWin_);
}
if (maxCWin_ < HICN_MIN_CWIN) maxCWin_ = HICN_MIN_CWIN;
}
void RTCTransportProtocol::updateWindow() {
if (currentState_ == HICN_RTC_SYNC_STATE) return;
if (currentCWin_ < maxCWin_ * 0.9) {
currentCWin_ =
min(maxCWin_, (uint32_t)(currentCWin_ * HICN_WIN_INCREASE_FACTOR));
} else if (currentCWin_ > maxCWin_) {
currentCWin_ =
max((uint32_t)(currentCWin_ * HICN_WIN_DECREASE_FACTOR), HICN_MIN_CWIN);
}
}
void RTCTransportProtocol::decreaseWindow() {
// this is used only in SYNC mode
if (currentState_ == HICN_RTC_NORMAL_STATE) return;
if (gotFutureNack_ == 1)
currentCWin_ = min((currentCWin_ - 1),
(uint32_t)ceil((double)maxCWin_ * 0.66)); // 2/3
else
currentCWin_--;
currentCWin_ = max(currentCWin_, HICN_MIN_CWIN);
}
void RTCTransportProtocol::increaseWindow() {
// this is used only in SYNC mode
if (currentState_ == HICN_RTC_NORMAL_STATE) return;
// we need to be carefull to do not increase the window to much
if (currentCWin_ < ((double)maxCWin_ * 0.7)) {
currentCWin_ = currentCWin_ + 1; // exponential
} else {
currentCWin_ = min(
maxCWin_,
(uint32_t)ceil(currentCWin_ + (1.0 / (double)currentCWin_))); // linear
}
}
void RTCTransportProtocol::probeRtt() {
probe_timer_->expires_from_now(std::chrono::milliseconds(1000));
probe_timer_->async_wait([this](std::error_code ec) {
if (ec) return;
probeRtt();
});
// To avoid sending the first probe, because the transport is not running yet
if (is_first_ && !is_running_) return;
time_sent_probe_ = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
Name *interest_name = nullptr;
socket_->getSocketOption(GeneralTransportOptions::NETWORK_NAME,
&interest_name);
// get a random numbe in the probe seq range
std::default_random_engine eng((std::random_device())());
std::uniform_int_distribution<uint32_t> idis(HICN_MIN_PROBE_SEQ,
HICN_MAX_PROBE_SEQ);
probe_seq_number_ = idis(eng);
interest_name->setSuffix(probe_seq_number_);
// we considere the probe as a rtx so that we do not incresea inFlightInt
received_probe_ = false;
TRANSPORT_LOGD("Send content interest %u (probeRtt)",
interest_name->getSuffix());
sendInterest(interest_name, true);
}
void RTCTransportProtocol::sendInterest(Name *interest_name, bool rtx) {
auto interest = getPacket();
interest->setName(*interest_name);
uint32_t interestLifetime = default_values::interest_lifetime;
socket_->getSocketOption(GeneralTransportOptions::INTEREST_LIFETIME,
interestLifetime);
interest->setLifetime(uint32_t(interestLifetime));
if (*on_interest_output_) {
(*on_interest_output_)(*socket_->getInterface(), *interest);
}
if (TRANSPORT_EXPECT_FALSE(!is_running_ && !is_first_)) {
return;
}
portal_->sendInterest(std::move(interest));
sentInterest_++;
if (!rtx) {
packets_in_window_[interest_name->getSuffix()] = 0;
inflightInterestsCount_++;
}
}
void RTCTransportProtocol::scheduleNextInterests() {
if (!is_running_ && !is_first_) return;
TRANSPORT_LOGD("----- [window %u - inflight_interests %u = %d] -----",
currentCWin_, inflightInterestsCount_,
currentCWin_ - inflightInterestsCount_);
while (inflightInterestsCount_ < currentCWin_) {
Name *interest_name = nullptr;
socket_->getSocketOption(GeneralTransportOptions::NETWORK_NAME,
&interest_name);
interest_name->setSuffix(actualSegment_);
// if the producer socket is not stated (does not reply even with nacks)
// we keep asking for something without marking anything as lost (see
// timeout). In this way when the producer socket will start the
// consumer socket will not miss any packet
if (TRANSPORT_EXPECT_FALSE(!firstPckReceived_)) {
uint32_t pkt = actualSegment_ & modMask_;
inflightInterests_[pkt].state = sent_;
inflightInterests_[pkt].sequence = actualSegment_;
actualSegment_ = (actualSegment_ + 1) % HICN_MIN_PROBE_SEQ;
TRANSPORT_LOGD(
"Send content interest %u (scheduleNextInterests no replies)",
interest_name->getSuffix());
sendInterest(interest_name, false);
return;
}
// we send the packet only if it is not pending yet
// notice that this is not true for rtx packets
if (portal_->interestIsPending(*interest_name)) {
actualSegment_ = (actualSegment_ + 1) % HICN_MIN_PROBE_SEQ;
continue;
}
uint32_t pkt = actualSegment_ & modMask_;
// if we already reacevied the content we don't ask it again
if (inflightInterests_[pkt].state == received_ &&
inflightInterests_[pkt].sequence == actualSegment_) {
actualSegment_ = (actualSegment_ + 1) % HICN_MIN_PROBE_SEQ;
continue;
}
// same if the packet is lost
if (inflightInterests_[pkt].state == lost_ &&
inflightInterests_[pkt].sequence == actualSegment_) {
actualSegment_ = (actualSegment_ + 1) % HICN_MIN_PROBE_SEQ;
continue;
}
inflightInterests_[pkt].transmissionTime =
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
// here the packet can be in any state except for lost or recevied
inflightInterests_[pkt].state = sent_;
inflightInterests_[pkt].sequence = actualSegment_;
actualSegment_ = (actualSegment_ + 1) % HICN_MIN_PROBE_SEQ;
TRANSPORT_LOGD("Send content interest %u (scheduleNextInterests)",
interest_name->getSuffix());
sendInterest(interest_name, false);
}
TRANSPORT_LOGD("----- end of scheduleNextInterest -----");
}
bool RTCTransportProtocol::verifyKeyPackets() {
// Not yet implemented
return false;
}
void RTCTransportProtocol::sentinelTimer() {
uint32_t wait = 50;
if (pathTable_.find(producerPathLabels_[0]) != pathTable_.end() &&
pathTable_.find(producerPathLabels_[1]) != pathTable_.end()) {
// we have all the info to set the timers
wait = round(pathTable_[producerPathLabels_[0]]->getInterArrivalGap());
if (wait == 0) wait = 1;
}
sentinel_timer_->expires_from_now(std::chrono::milliseconds(wait));
sentinel_timer_->async_wait([this](std::error_code ec) {
if (ec) return;
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
if (pathTable_.find(producerPathLabels_[0]) == pathTable_.end() ||
pathTable_.find(producerPathLabels_[1]) == pathTable_.end()) {
// we have no info, so we send again
for (auto it = packets_in_window_.begin(); it != packets_in_window_.end();
it++) {
uint32_t pkt = it->first & modMask_;
if (inflightInterests_[pkt].sequence == it->first) {
inflightInterests_[pkt].transmissionTime = now;
Name *interest_name = nullptr;
socket_->getSocketOption(GeneralTransportOptions::NETWORK_NAME,
&interest_name);
interest_name->setSuffix(it->first);
it->second++;
sendInterest(interest_name, true);
}
}
} else {
uint64_t max_waiting_time = // wait at least 50ms
(pathTable_[producerPathLabels_[1]]->getMinRtt() -
pathTable_[producerPathLabels_[0]]->getMinRtt()) +
(ceil(pathTable_[producerPathLabels_[0]]->getInterArrivalGap()) * 50);
if ((currentState_ == HICN_RTC_NORMAL_STATE) &&
(inflightInterestsCount_ >= currentCWin_) &&
((now - lastEvent_) > max_waiting_time) && (lossRate_ >= 0.05)) {
uint64_t RTT = pathTable_[producerPathLabels_[1]]->getMinRtt();
for (auto it = packets_in_window_.begin();
it != packets_in_window_.end(); it++) {
uint32_t pkt = it->first & modMask_;
if (inflightInterests_[pkt].sequence == it->first &&
((now - inflightInterests_[pkt].transmissionTime) >= RTT)) {
inflightInterests_[pkt].transmissionTime = now;
Name *interest_name = nullptr;
socket_->getSocketOption(GeneralTransportOptions::NETWORK_NAME,
&interest_name);
interest_name->setSuffix(it->first);
it->second++;
sendInterest(interest_name, true);
}
}
}
}
sentinelTimer();
});
}
void RTCTransportProtocol::addRetransmissions(uint32_t val) {
// add only val in the rtx list
addRetransmissions(val, val + 1);
}
void RTCTransportProtocol::addRetransmissions(uint32_t start, uint32_t stop) {
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
bool new_rtx = false;
for (uint32_t i = start; i < stop; i++) {
auto it = interestRetransmissions_.find(i);
if (it == interestRetransmissions_.end()) {
uint32_t pkt = i & modMask_;
if (lastSegNacked_ <= i && inflightInterests_[pkt].state != received_) {
// it must be larger than the last past nack received
packetLost_++;
interestRetransmissions_[i] = 0;
uint32_t pkt = i & modMask_;
// we reset the transmission time setting to now, so that rtx will
// happne in one RTT on waint one inter arrival gap
inflightInterests_[pkt].transmissionTime = now;
new_rtx = true;
}
} // if the retransmission is already there the rtx timer will
// take care of it
}
// in case a new rtx is added to the map we need to run checkRtx()
if (new_rtx) {
if (rtx_timer_used_) {
// if a timer is pending we need to delete it
rtx_timer_->cancel();
rtx_timer_used_ = false;
}
checkRtx();
}
}
uint64_t RTCTransportProtocol::retransmit() {
auto it = interestRetransmissions_.begin();
// cut len to max HICN_MAX_RTX_SIZE
// since we use a map, the smaller (and so the older) sequence number are at
// the beginnin of the map
while (interestRetransmissions_.size() > HICN_MAX_RTX_SIZE) {
it = interestRetransmissions_.erase(it);
}
it = interestRetransmissions_.begin();
uint64_t smallest_timeout = ULONG_MAX;
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
while (it != interestRetransmissions_.end()) {
uint32_t pkt = it->first & modMask_;
if (inflightInterests_[pkt].sequence != it->first) {
// this packet is not anymore in the inflight buffer, erase it
it = interestRetransmissions_.erase(it);
continue;
}
// we retransmitted the packet too many times
if (it->second >= HICN_MAX_RTX) {
it = interestRetransmissions_.erase(it);
continue;
}
// this packet is too old
if ((lastReceived_ > it->first) &&
(lastReceived_ - it->first) > HICN_MAX_RTX_MAX_AGE) {
it = interestRetransmissions_.erase(it);
continue;
}
uint64_t rtx_time = now;
if (it->second == 0) {
// first rtx
if (producerPathLabels_[0] != producerPathLabels_[1]) {
// multipath
if (pathTable_.find(producerPathLabels_[0]) != pathTable_.end() &&
pathTable_.find(producerPathLabels_[1]) != pathTable_.end() &&
(pathTable_[producerPathLabels_[0]]->getInterArrivalGap() <
HICN_MIN_INTER_ARRIVAL_GAP)) {
rtx_time = lastReceivedTime_ +
(pathTable_[producerPathLabels_[1]]->getMinRtt() -
pathTable_[producerPathLabels_[0]]->getMinRtt()) +
pathTable_[producerPathLabels_[0]]->getInterArrivalGap();
} // else low rate producer, send it immediatly
} else {
// single path
if (pathTable_.find(producerPathLabels_[0]) != pathTable_.end() &&
(pathTable_[producerPathLabels_[0]]->getInterArrivalGap() <
HICN_MIN_INTER_ARRIVAL_GAP)) {
rtx_time = lastReceivedTime_ +
pathTable_[producerPathLabels_[0]]->getInterArrivalGap();
} // else low rate producer send immediatly
}
} else {
// second or plus rtx, wait for the min rtt
if (pathTable_.find(producerPathLabels_[0]) != pathTable_.end()) {
uint64_t sent_time = inflightInterests_[pkt].transmissionTime;
rtx_time = sent_time + pathTable_[producerPathLabels_[0]]->getMinRtt();
} // if we don't have info we send it immediatly
}
if (now >= rtx_time) {
inflightInterests_[pkt].transmissionTime = now;
it->second++;
Name *interest_name = nullptr;
socket_->getSocketOption(GeneralTransportOptions::NETWORK_NAME,
&interest_name);
interest_name->setSuffix(it->first);
TRANSPORT_LOGD("Send content interest %u (retransmit)",
interest_name->getSuffix());
sendInterest(interest_name, true);
} else if (rtx_time < smallest_timeout) {
smallest_timeout = rtx_time;
}
++it;
}
return smallest_timeout;
}
void RTCTransportProtocol::checkRtx() {
if (interestRetransmissions_.empty()) {
rtx_timer_used_ = false;
return;
}
uint64_t next_timeout = retransmit();
uint64_t wait = 1;
uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
if (next_timeout != ULONG_MAX && now < next_timeout) {
wait = next_timeout - now;
}
rtx_timer_used_ = true;
rtx_timer_->expires_from_now(std::chrono::milliseconds(wait));
rtx_timer_->async_wait([this](std::error_code ec) {
if (ec) return;
rtx_timer_used_ = false;
checkRtx();
});
}
void RTCTransportProtocol::onTimeout(Interest::Ptr &&interest) {
uint32_t segmentNumber = interest->getName().getSuffix();
if (segmentNumber >= HICN_MIN_PROBE_SEQ) {
// this is a timeout on a probe, do nothing
return;
}
uint32_t pkt = segmentNumber & modMask_;
if (TRANSPORT_EXPECT_FALSE(!firstPckReceived_)) {
// we do nothing, and we keep asking the same stuff over
// and over until we get at least a packet
inflightInterestsCount_--;
lastEvent_ = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
packets_in_window_.erase(segmentNumber);
scheduleNextInterests();
return;
}
if (inflightInterests_[pkt].state == sent_) {
lastEvent_ = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
packets_in_window_.erase(segmentNumber);
inflightInterestsCount_--;
}
// check how many times we sent this packet
auto it = interestRetransmissions_.find(segmentNumber);
if (it != interestRetransmissions_.end() && it->second >= HICN_MAX_RTX) {
inflightInterests_[pkt].state = lost_;
}
if (inflightInterests_[pkt].state == sent_) {
inflightInterests_[pkt].state = timeout1_;
} else if (inflightInterests_[pkt].state == timeout1_) {
inflightInterests_[pkt].state = timeout2_;
} else if (inflightInterests_[pkt].state == timeout2_) {
inflightInterests_[pkt].state = lost_;
}
if (inflightInterests_[pkt].state == lost_) {
interestRetransmissions_.erase(segmentNumber);
} else {
addRetransmissions(segmentNumber);
}
scheduleNextInterests();
}
bool RTCTransportProtocol::onNack(const ContentObject &content_object,
bool rtx) {
uint32_t *payload = (uint32_t *)content_object.getPayload()->data();
uint32_t productionSeg = *payload;
uint32_t productionRate = *(++payload);
uint32_t nackSegment = content_object.getName().getSuffix();
bool old_nack = false;
// if we did not received anything between lastReceived_ + 1 and productionSeg
// most likelly some packets got lost
if (lastReceived_ != 0) {
addRetransmissions(lastReceived_ + 1, productionSeg);
}
if (!rtx) {
gotNack_ = true;
// we synch the estimated production rate with the actual one
estimatedBw_ = (double)productionRate;
}
if (productionSeg > nackSegment) {
// we are asking for stuff produced in the past
actualSegment_ = max(productionSeg, actualSegment_) % HICN_MIN_PROBE_SEQ;
if (!rtx) {
if (currentState_ == HICN_RTC_NORMAL_STATE) {
currentState_ = HICN_RTC_SYNC_STATE;
}
computeMaxWindow(productionRate, 0);
increaseWindow();
}
lastSegNacked_ = productionSeg;
old_nack = true;
} else if (productionSeg < nackSegment) {
actualSegment_ = productionSeg % HICN_MIN_PROBE_SEQ;
if (!rtx) {
// we are asking stuff in the future
gotFutureNack_++;
computeMaxWindow(productionRate, 0);
decreaseWindow();
if (currentState_ == HICN_RTC_SYNC_STATE) {
currentState_ = HICN_RTC_NORMAL_STATE;
}
}
} else {
// we are asking the right thing, but the producer is slow
// keep doing the same until the packet is produced
actualSegment_ = productionSeg % HICN_MIN_PROBE_SEQ;
}
return old_nack;
}
void RTCTransportProtocol::onContentObject(
Interest::Ptr &&interest, ContentObject::Ptr &&content_object) {
// as soon as we get a packet firstPckReceived_ will never be false
firstPckReceived_ = true;
auto payload = content_object->getPayload();
uint32_t payload_size = (uint32_t)payload->length();
uint32_t segmentNumber = content_object->getName().getSuffix();
uint32_t pkt = segmentNumber & modMask_;
if (*on_content_object_input_) {
(*on_content_object_input_)(*socket_->getInterface(), *content_object);
}
if (segmentNumber >= HICN_MIN_PROBE_SEQ) {
TRANSPORT_LOGD("Received probe %u", segmentNumber);
if (segmentNumber == probe_seq_number_ && !received_probe_) {
received_probe_ = true;
uint32_t pathLabel = content_object->getPathLabel();
if (pathTable_.find(pathLabel) == pathTable_.end()) {
std::shared_ptr<RTCDataPath> newPath = std::make_shared<RTCDataPath>();
pathTable_[pathLabel] = newPath;
}
// this is the expected probe, update the RTT and drop the packet
uint64_t RTT = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count() -
time_sent_probe_;
pathTable_[pathLabel]->insertRttSample(RTT);
pathTable_[pathLabel]->receivedNack();
}
return;
}
// check if the packet is a rtx
bool is_rtx = false;
if (interestRetransmissions_.find(segmentNumber) !=
interestRetransmissions_.end()) {
is_rtx = true;
} else {
auto it_win = packets_in_window_.find(segmentNumber);
if (it_win != packets_in_window_.end() && it_win->second != 0)
is_rtx = true;
}
if (payload_size == HICN_NACK_HEADER_SIZE) {
TRANSPORT_LOGD("Received nack %u", segmentNumber);
if (inflightInterests_[pkt].state == sent_) {
lastEvent_ = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
packets_in_window_.erase(segmentNumber);
inflightInterestsCount_--;
}
bool old_nack = false;
if (!is_rtx) {
// this is not a retransmitted packet
old_nack = onNack(*content_object, false);
updateDelayStats(*content_object);
} else {
old_nack = onNack(*content_object, true);
}
// the nacked_ state is used only to avoid to decrease
// inflightInterestsCount_ multiple times. In fact, every time that we
// receive an event related to an interest (timeout, nacked, content) we
// cange the state. In this way we are sure that we do not decrease twice
// the counter
if (old_nack) {
inflightInterests_[pkt].state = lost_;
interestRetransmissions_.erase(segmentNumber);
} else {
inflightInterests_[pkt].state = nacked_;
}
} else {
TRANSPORT_LOGD("Received content %u", segmentNumber);
avgPacketSize_ = (HICN_ESTIMATED_PACKET_SIZE * avgPacketSize_) +
((1 - HICN_ESTIMATED_PACKET_SIZE) * payload->length());
receivedBytes_ += (uint32_t)(content_object->headerSize() +
content_object->payloadSize());
if (inflightInterests_[pkt].state == sent_) {
lastEvent_ = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
packets_in_window_.erase(segmentNumber);
inflightInterestsCount_--; // packet sent without timeouts
}
if (inflightInterests_[pkt].state == sent_ && !is_rtx) {
// delay stats are computed only for non retransmitted data
updateDelayStats(*content_object);
}
addRetransmissions(lastReceived_ + 1, segmentNumber);
if (segmentNumber > highestReceived_) {
highestReceived_ = segmentNumber;
}
if (segmentNumber > lastReceived_) {
lastReceived_ = segmentNumber;
lastReceivedTime_ =
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
receivedData_++;
inflightInterests_[pkt].state = received_;
auto it = interestRetransmissions_.find(segmentNumber);
if (it != interestRetransmissions_.end()) lossRecovered_++;
interestRetransmissions_.erase(segmentNumber);
reassemble(std::move(content_object));
increaseWindow();
}
scheduleNextInterests();
}
} // end namespace protocol
} // end namespace transport
|