1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*
* Copyright (c) 2021 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <glog/logging.h>
#include <hicn/transport/interfaces/notification.h>
#include <hicn/transport/interfaces/socket_options_keys.h>
#include <protocols/rtc/rtc_consts.h>
#include <protocols/rtc/rtc_recovery_strategy.h>
namespace transport {
namespace protocol {
namespace rtc {
using namespace transport::interface;
RecoveryStrategy::RecoveryStrategy(
Indexer *indexer, SendRtxCallback &&callback, asio::io_service &io_service,
bool use_rtx, bool use_fec, interface::StrategyCallback *external_callback)
: recovery_on_(false),
next_rtx_timer_(MAX_TIMER_RTX),
send_rtx_callback_(std::move(callback)),
indexer_(indexer),
round_id_(0),
last_fec_used_(0),
callback_(external_callback) {
setRtxFec(use_rtx, use_fec);
timer_ = std::make_unique<asio::steady_timer>(io_service);
}
RecoveryStrategy::RecoveryStrategy(RecoveryStrategy &&rs)
: rtx_state_(std::move(rs.rtx_state_)),
rtx_timers_(std::move(rs.rtx_timers_)),
recover_with_fec_(std::move(rs.recover_with_fec_)),
timer_(std::move(rs.timer_)),
next_rtx_timer_(std::move(rs.next_rtx_timer_)),
send_rtx_callback_(std::move(rs.send_rtx_callback_)),
n_(std::move(rs.n_)),
k_(std::move(rs.k_)),
indexer_(std::move(rs.indexer_)),
state_(std::move(rs.state_)),
rc_(std::move(rs.rc_)),
round_id_(std::move(rs.round_id_)),
last_fec_used_(std::move(rs.last_fec_used_)),
callback_(rs.callback_) {
setFecParams(n_, k_);
}
RecoveryStrategy::~RecoveryStrategy() {}
void RecoveryStrategy::setFecParams(uint32_t n, uint32_t k) {
n_ = n;
k_ = k;
// XXX for the moment we go in steps of 5% loss rate.
// max loss rate = 95%
for (uint32_t loss_rate = 5; loss_rate < 100; loss_rate += 5) {
double dec_loss_rate = (double)loss_rate / 100.0;
double exp_losses = (double)k_ * dec_loss_rate;
uint32_t fec_to_ask = ceil(exp_losses / (1 - dec_loss_rate));
fec_state_ f;
f.fec_to_ask = std::min(fec_to_ask, (n_ - k_));
f.last_update = round_id_;
f.avg_residual_losses = 0.0;
f.consecutive_use = 0;
fec_per_loss_rate_.push_back(f);
}
}
bool RecoveryStrategy::lossDetected(uint32_t seq) {
if (isRtx(seq)) {
// this packet is already in the list of rtx
return false;
}
auto it = recover_with_fec_.find(seq);
if (it != recover_with_fec_.end()) {
// this packet is already in list of packets to recover with fec
// this list contians also fec packets that will not be recovered with rtx
return false;
}
// new loss detected, recover it according to the strategy
newPacketLoss(seq);
return true;
}
void RecoveryStrategy::clear() {
rtx_state_.clear();
rtx_timers_.clear();
recover_with_fec_.clear();
if (next_rtx_timer_ != MAX_TIMER_RTX) {
next_rtx_timer_ = MAX_TIMER_RTX;
timer_->cancel();
}
}
// rtx functions
void RecoveryStrategy::addNewRtx(uint32_t seq, bool force) {
if (!indexer_->isFec(seq) || force) {
// this packet needs to be re-transmitted
rtxState state;
state.first_send_ = state_->getInterestSentTime(seq);
if (state.first_send_ == 0) // this interest was never sent before
state.first_send_ = getNow();
state.next_send_ = computeNextSend(seq, true);
state.rtx_count_ = 0;
DLOG_IF(INFO, VLOG_IS_ON(4))
<< "Add " << seq << " to retransmissions. next rtx is in "
<< state.next_send_ - getNow() << " ms";
rtx_state_.insert(std::pair<uint32_t, rtxState>(seq, state));
rtx_timers_.insert(std::pair<uint64_t, uint32_t>(state.next_send_, seq));
// if a new rtx is introduced, check the rtx timer
scheduleNextRtx();
} else {
// do not re-send fec packets but keep track of them
recover_with_fec_.insert(seq);
state_->onPossibleLossWithNoRtx(seq);
}
}
uint64_t RecoveryStrategy::computeNextSend(uint32_t seq, bool new_rtx) {
uint64_t now = getNow();
if (new_rtx) {
// for the new rtx we wait one estimated IAT after the loss detection. this
// is bacause, assuming that packets arrive with a constant IAT, we should
// get a new packet every IAT
double prod_rate = state_->getProducerRate();
uint32_t estimated_iat = SENTINEL_TIMER_INTERVAL;
uint32_t jitter = 0;
if (prod_rate != 0) {
double packet_size = state_->getAveragePacketSize();
estimated_iat = ceil(1000.0 / (prod_rate / packet_size));
jitter = ceil(state_->getJitter());
}
uint32_t wait = 1;
if (estimated_iat < 18) {
// for low rate app we do not wait to send a RTX
// we consider low rate stream with less than 50pps (iat >= 20ms)
// (e.g. audio in videoconf, mobile games).
// in the check we use 18ms to accomodate for measurements errors
// for flows with higher rate wait 1 ait + jitter
wait = estimated_iat + jitter;
}
DLOG_IF(INFO, VLOG_IS_ON(3))
<< "first rtx for " << seq << " in " << wait
<< " ms, rtt = " << state_->getMinRTT() << " ait = " << estimated_iat
<< " jttr = " << jitter;
return now + wait;
} else {
// wait one RTT
uint32_t wait = SENTINEL_TIMER_INTERVAL;
double prod_rate = state_->getProducerRate();
if (prod_rate == 0) {
return now + SENTINEL_TIMER_INTERVAL;
}
double packet_size = state_->getAveragePacketSize();
uint32_t estimated_iat = ceil(1000.0 / (prod_rate / packet_size));
uint64_t rtt = state_->getMinRTT();
if (rtt == 0) rtt = SENTINEL_TIMER_INTERVAL;
wait = rtt;
uint32_t jitter = ceil(state_->getJitter());
wait += jitter;
// it may happen that the channel is congested and we have some additional
// queuing delay to take into account
uint32_t queue = ceil(state_->getQueuing());
wait += queue;
DLOG_IF(INFO, VLOG_IS_ON(3))
<< "next rtx for " << seq << " in " << wait
<< " ms, rtt = " << state_->getMinRTT() << " ait = " << estimated_iat
<< " jttr = " << jitter << " queue = " << queue;
return now + wait;
}
}
void RecoveryStrategy::retransmit() {
if (rtx_timers_.size() == 0) return;
uint64_t now = getNow();
auto it = rtx_timers_.begin();
std::unordered_set<uint32_t> lost_pkt;
uint32_t sent_counter = 0;
while (it != rtx_timers_.end() && it->first <= now &&
sent_counter < MAX_RTX_IN_BATCH) {
uint32_t seq = it->second;
auto rtx_it =
rtx_state_.find(seq); // this should always return a valid iter
if (rtx_it->second.rtx_count_ >= RTC_MAX_RTX ||
(now - rtx_it->second.first_send_) >= RTC_MAX_AGE ||
seq < state_->getLastSeqNacked()) {
// max rtx reached or packet too old or packet nacked, this packet is lost
DLOG_IF(INFO, VLOG_IS_ON(3))
<< "packet " << seq << " lost because 1) max rtx: "
<< (rtx_it->second.rtx_count_ >= RTC_MAX_RTX) << " 2) max age: "
<< ((now - rtx_it->second.first_send_) >= RTC_MAX_AGE)
<< " 3) nacked: " << (seq < state_->getLastSeqNacked());
lost_pkt.insert(seq);
it++;
} else {
// resend the packet
state_->onRetransmission(seq);
double prod_rate = state_->getProducerRate();
if (prod_rate != 0) rtx_it->second.rtx_count_++;
rtx_it->second.next_send_ = computeNextSend(seq, false);
it = rtx_timers_.erase(it);
rtx_timers_.insert(
std::pair<uint64_t, uint32_t>(rtx_it->second.next_send_, seq));
DLOG_IF(INFO, VLOG_IS_ON(3))
<< "send rtx for sequence " << seq << ", next send in "
<< (rtx_it->second.next_send_ - now);
send_rtx_callback_(seq);
sent_counter++;
}
}
// remove packets if needed
for (auto lost_it = lost_pkt.begin(); lost_it != lost_pkt.end(); lost_it++) {
uint32_t seq = *lost_it;
state_->onPacketLost(seq);
deleteRtx(seq);
}
}
void RecoveryStrategy::scheduleNextRtx() {
if (rtx_timers_.size() == 0) {
// all the rtx were removed, reset timer
next_rtx_timer_ = MAX_TIMER_RTX;
return;
}
// check if timer is alreay set
if (next_rtx_timer_ != MAX_TIMER_RTX) {
// a new check for rtx is already scheduled
if (next_rtx_timer_ > rtx_timers_.begin()->first) {
// we need to re-schedule it
timer_->cancel();
} else {
// wait for the next timer
return;
}
}
// set a new timer
next_rtx_timer_ = rtx_timers_.begin()->first;
uint64_t now = utils::SteadyTime::nowMs().count();
uint64_t wait = 1;
if (next_rtx_timer_ != MAX_TIMER_RTX && next_rtx_timer_ > now)
wait = next_rtx_timer_ - now;
std::weak_ptr<RecoveryStrategy> self(shared_from_this());
timer_->expires_from_now(std::chrono::milliseconds(wait));
timer_->async_wait([self](const std::error_code &ec) {
if (ec) return;
if (auto s = self.lock()) {
s->retransmit();
s->next_rtx_timer_ = MAX_TIMER_RTX;
s->scheduleNextRtx();
}
});
}
void RecoveryStrategy::deleteRtx(uint32_t seq) {
auto it_rtx = rtx_state_.find(seq);
if (it_rtx == rtx_state_.end()) return; // rtx not found
// remove the rtx from the timers list
uint64_t ts = it_rtx->second.next_send_;
auto it_timers = rtx_timers_.find(ts);
while (it_timers != rtx_timers_.end() && it_timers->first == ts) {
if (it_timers->second == seq) {
rtx_timers_.erase(it_timers);
break;
}
it_timers++;
}
// remove rtx
rtx_state_.erase(it_rtx);
}
// fec functions
uint32_t RecoveryStrategy::computeFecPacketsToAsk(bool in_sync) {
double loss_rate = state_->getMaxLossRate() * 100; // use loss rate in %
if (loss_rate > 95) loss_rate = 95; // max loss rate
if (loss_rate == 0) return 0;
// once per minute try to reduce the fec rate. it may happen that for some bin
// we ask too many fec packet. here we try to reduce this values gently
if (round_id_ % ROUNDS_PER_MIN == 0) {
reduceFec();
}
// keep track of the last used fec. if we use a new bin on this round reset
// consecutive use and avg loss in the prev bin
uint32_t bin = ceil(loss_rate / 5.0) - 1;
if (bin > fec_per_loss_rate_.size() - 1) bin = fec_per_loss_rate_.size() - 1;
if (bin != last_fec_used_) {
fec_per_loss_rate_[last_fec_used_].consecutive_use = 0;
fec_per_loss_rate_[last_fec_used_].avg_residual_losses = 0.0;
}
last_fec_used_ = bin;
fec_per_loss_rate_[last_fec_used_].consecutive_use++;
// we update the stats only once very 5 rounds (1sec) that is the rate at
// which we compute residual losses
if (round_id_ % ROUNDS_PER_SEC == 0) {
double residual_losses = state_->getResidualLossRate() * 100;
// update residual loss rate
fec_per_loss_rate_[bin].avg_residual_losses =
(fec_per_loss_rate_[bin].avg_residual_losses * MOVING_AVG_ALPHA) +
(1 - MOVING_AVG_ALPHA) * residual_losses;
if ((fec_per_loss_rate_[bin].last_update - round_id_) <
WAIT_BEFORE_FEC_UPDATE) {
// this bin is been updated recently so don't modify it and
// return the current state
return fec_per_loss_rate_[bin].fec_to_ask;
}
// if the residual loss rate is too high and we can ask more fec packets and
// we are using this configuration since at least 5 sec update fec
if (fec_per_loss_rate_[bin].avg_residual_losses > MAX_RESIDUAL_LOSS_RATE &&
fec_per_loss_rate_[bin].fec_to_ask < (n_ - k_) &&
fec_per_loss_rate_[bin].consecutive_use > WAIT_BEFORE_FEC_UPDATE) {
// so increase the number of fec packets to ask
fec_per_loss_rate_[bin].fec_to_ask++;
fec_per_loss_rate_[bin].last_update = round_id_;
fec_per_loss_rate_[bin].avg_residual_losses = 0.0;
}
}
return fec_per_loss_rate_[bin].fec_to_ask;
}
void RecoveryStrategy::setRtxFec(std::optional<bool> rtx_on,
std::optional<bool> fec_on) {
if (rtx_on) rtx_on_ = *rtx_on;
if (fec_on) fec_on_ = *fec_on;
if (*callback_) {
notification::RecoveryStrategy strategy =
notification::RecoveryStrategy::RECOVERY_OFF;
if (rtx_on_ && fec_on_)
strategy = notification::RecoveryStrategy::RTX_AND_FEC;
else if (rtx_on_)
strategy = notification::RecoveryStrategy::RTX_ONLY;
else if (fec_on_)
strategy = notification::RecoveryStrategy::FEC_ONLY;
(*callback_)(strategy);
}
}
// common functions
void RecoveryStrategy::onLostTimeout(uint32_t seq) { removePacketState(seq); }
void RecoveryStrategy::removePacketState(uint32_t seq) {
auto it_fec = recover_with_fec_.find(seq);
if (it_fec != recover_with_fec_.end()) {
recover_with_fec_.erase(it_fec);
return;
}
deleteRtx(seq);
}
// private methods
void RecoveryStrategy::reduceFec() {
for (uint32_t loss_rate = 5; loss_rate < 100; loss_rate += 5) {
double dec_loss_rate = (double)loss_rate / 100.0;
double exp_losses = (double)k_ * dec_loss_rate;
uint32_t fec_to_ask = ceil(exp_losses / (1 - dec_loss_rate));
uint32_t bin = ceil(loss_rate / 5.0) - 1;
if (fec_per_loss_rate_[bin].fec_to_ask > fec_to_ask) {
fec_per_loss_rate_[bin].fec_to_ask--;
// std::cout << "reduce fec to ask for bin " << bin << std::endl;
}
}
}
} // end namespace rtc
} // end namespace protocol
} // end namespace transport
|